A short deformation argument.
Abstract
We give a very short proof of the Fundamental Theorem of Algebra using a one-parameter deformation and a discriminant-locus argument.
Main Theorem
$$
% ============================================
% GENERAL / UNIVERSAL
% Used throughout the documentation
% ============================================
% --- Basic Number Systems ---
\newcommand{\IR}{\mathbb{R}} % Real numbers #listed
\newcommand{\IC}{\mathbb{C}} % Complex numbers #listed
\newcommand{\IN}{\mathbb{N}} % Natural numbers #listed
\newcommand{\IZ}{\mathbb{Z}} % Integers #listed
\newcommand{\IQ}{\mathbb{Q}} % Rational numbers #listed
\newcommand{\IA}{\mathbb{A}} % Affine space #listed
\newcommand{\IB}{\mathbb{B}} % Generic field #listed
\newcommand{\ID}{\mathbb{D}} % Generic field #listed
\newcommand{\IF}{\mathbb{F}} % Generic field #listed
\newcommand{\IH}{\mathbb{H}} % Quaternions #listed
\newcommand{\II}{\mathbb{I}} % Generic field #listed
\newcommand{\IL}{\mathbb{L}} % Generic field #listed
\newcommand{\IP}{\mathbb{P}} % Projective space #listed
\newcommand{\IS}{\mathbb{S}} % Sphere #listed
\newcommand{\IV}{\mathbb{V}} % Generic vector space #listed
% --- Function Spaces ---
\newcommand{\CINF}{\mathcal{C}^\infty} % Smooth (infinitely differentiable) functions #listed
\newcommand{\CC}{\mathcal{C}} % C^k functions #listed
\newcommand{\Ck}{\mathcal{C}^k} % C^k functions #listed
\newcommand{\CK}{\mathcal{C}^K} % C^k functions #listed
% --- Fundamental Operators ---
\newcommand{\del}{\partial} % Partial derivative #listed
\newcommand{\uDelta}{\underline{\Delta}} % Discrete difference operator #listed
\newcommand{\Shift}{\mathrm{S}_\downarrow} % Shift operator #listed
% --- Logical & Set Operations ---
\newcommand{\IFF}{\Leftrightarrow} % If and only if #listed
\newcommand{\Ind}{\mathbb{1}} % Indicator/characteristic function #listed
\newcommand{\IndA}[1]{\mathbb{1}\lbrace #1 \rbrace} % Indicator with condition #listed
\newcommand{\1}{\mathbb{1}} % Indicator shorthand #listed
\newcommand{\Set}[2]{\left\{\, #1 \;\vert\; #2 \,\right\}} % Set-builder notation #listed
\newcommand{\CSet}[2]{\#\{\, #1 \;\vert\; #2 \,\right\}} % Cardinality notation #listed
\newcommand{\C}{\,\#} % Cardinality operator #listed
% --- Limits & Categorical ---
\newcommand{\limproj}{\varprojlim} % Inverse limit #listed
\newcommand{\limind}{\varinjlim} % Direct limit #listed
\newcommand{\Hom}{\mathrm{Hom}} % Homomorphism #listed
\newcommand{\End}{\mathrm{End}} % Endomorphism #listed
\newcommand{\Ext}{\mathrm{Ext}} % Ext functor #listed
% --- Arrows & Relations ---
\newcommand{\ra}{\rightarrow} % Right arrow #listed
\newcommand{\lra}{\longrightarrow} % Long right arrow #listed
\newcommand{\xlra}[1]{\overset{#1}{\lra}} % Labeled long arrow #listed
\newcommand{\la}{\leftarrow} % Left arrow #listed
\newcommand{\lla}{\longleftarrow} % Long left arrow #listed
\newcommand{\mono}{\hookrightarrow} % Monomorphism #listed
\newcommand{\epi}{\twoheadrightarrow} % Epimorphism #listed
\newcommand{\isom}{\cong} % Isomorphism #listed
\newcommand{\downto}{\searrow} % Diagonal arrow #listed
% --- Tensor & Algebraic Structures ---
\newcommand{\tensor}{\otimes} % Tensor product #listed
\newcommand{\tensors}{\tensor\dots\tensor} % Multiple tensor products #listed
\newcommand{\Tensor}{\bigotimes} % Big tensor product #listed
\newcommand{\stensor}{\odot} % Symmetric tensor product #listed
\newcommand{\vsum}{\oplus} % Direct sum #listed
\newcommand{\Vsum}{\bigoplus} % Big direct sum #listed
% --- Calligraphic Letters (Generic) ---
\newcommand{\KA}{\mathcal{A}}
\newcommand{\KB}{\mathcal{B}}
\newcommand{\KC}{\mathcal{C}}
\newcommand{\KD}{\mathcal{D}}
\newcommand{\KF}{\mathcal{F}}
\newcommand{\KH}{\mathcal{H}}
\newcommand{\KI}{\mathcal{I}}
\newcommand{\KL}{\mathcal{L}}
\newcommand{\KN}{\mathcal{N}}
\newcommand{\KP}{\mathcal{P}}
\newcommand{\KQ}{\mathcal{Q}}
\newcommand{\KR}{\mathcal{R}}
\newcommand{\KS}{\mathcal{S}}
\newcommand{\KV}{\mathcal{V}}
\newcommand{\KZ}{\mathcal{Z}}
% --- Fraktur Letters (Generic) ---
\newcommand{\gc}{\mathfrak{C}}
\newcommand{\gd}{\mathfrak{D}}
\newcommand{\gM}{\mathfrak{M}}
\newcommand{\gm}{\mathfrak{m}}
\newcommand{\gf}{\mathfrak{f}}
\newcommand{\gu}{\mathfrak{U}}
\newcommand{\fa}{\mathfrak{a}}
\newcommand{\fg}{\mathfrak{g}}
\newcommand{\fn}{\mathfrak{n}}
\newcommand{\fk}{\mathfrak{k}}
\newcommand{\fm}{\mathfrak{m}}
\newcommand{\fp}{\mathfrak{p}}
% --- Text & Formatting ---
\newcommand{\qtext}[1]{\quad\text{#1}\quad} % Quad spaced text #listed
\newcommand{\stext}[1]{\;\text{#1}\;} % Small spaced text #listed
\newcommand{\ssum}[1]{\sum_{\substack{#1}}} % Sum with substacked condition #listed
\newcommand{\half}{\frac{1}{2}} % One-half #listed
\newcommand{\floor}[1]{\lfloor #1 \rfloor} % Floor function #listed
\newcommand{\ceil}[1]{\lceil #1 \rceil} % Ceiling function #listed
\newcommand{\nl}{\\} % Newline #listed
% --- Common Functions ---
\newcommand{\id}{\mathrm{id}} % Identity function #listed
\newcommand{\rk}{\mathrm{rk}} % Rank #listed
\newcommand{\Ker}{\mathrm{Ker}} % Kernel #listed
\newcommand{\Diff}{\mathrm{Diff}} % Diffeomorphism group #listed
\newcommand{\Pic}{\mathrm{Pic}} % Picard group #listed
\newcommand{\Spec}{\mathrm{Spec}} % Spectrum #listed
\newcommand{\D}{\mathrm{D}} % Differential operator #listed
\newcommand{\DP}{\mathrm{D_{\!+}}} % Positive differential #listed
\newcommand{\DDP}{\mathrm{D^{\!+}}} % Upper differential #listed
% --- Variants ---
\newcommand{\vphi}{\varphi} % Variant phi #listed
\newcommand{\sphi}{\phi} % Straight phi #listed
\newcommand{\eps}{\varepsilon} % Epsilon variant #listed
\newcommand{\pt}{*} % Point notation #listed
\newcommand{\point}{*} % Point notation alt #listed
% --- Set Operations ---
\newcommand{\union}{\cup} % Union #listed
\newcommand{\Union}{\bigcup} % Big union #listed
\newcommand{\dotcup}{\ensuremath{\mathaccent\cdot\cup}} % Disjoint union #listed
\newcommand{\dunion}{\dotcup} % Disjoint union alt #listed
\newcommand{\<}{\langle} % Left angle bracket #listed
\newcommand{\>}{\rangle} % Right angle bracket #listed
\newcommand{\inpart}[1]{\in\text{\part}(#1)} % In partition of #listed
\newcommand{\trl}{\triangleleft} % Left triangle #listed
\newcommand{\trr}{\triangleright} % Right triangle #listed
% --- Misc ---
\newcommand{\curly}[1]{\mathcal{#1}}
\newcommand{\op}[1]{\mathrm{#1}}
\newcommand{\Cat}[1]{\mathfrak{#1}}
\newcommand{\cat}[1]{\mathbf{#1}}
\newcommand{\CAT}[1]{\left\{\,\text{#1}\,\right\}}
\newcommand{\CATii}[2]{\left\{\,\begin{array}{c}\text{#1}\\\text{#2}\end{array}\,\right\}}
\newcommand{\Mon}{\mathrm{Mon}}
\newcommand{\Lin}{\mathrm{Lin}}
\newcommand{\ev}{\mathrm{ev}}
\newcommand{\tc}{\prec_{\mathrm{tc}}}
\newcommand{\tightlist}{\setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}
\newcommand{\QED}{\square} % End of proof #listed
\newcommand{\part}{\vdash} % Turnstile #listed
\newcommand{\opart}{\models} % Semantic entailment #listed
\newcommand{\Def}{\mathrm{Def}} % Bialgebra defect #listed
% ============================================
% CHAPTER 1: DIFFERENTIAL DUALITY
% ============================================
\newcommand{\Jet}{\mathbf{Jet}} % Jet space of C infinity germs #listed
\newcommand{\jet}{\mathrm{jet}} % Jet functor #listed
\newcommand{\E}{\mathbf{E}} % Space of smooth functions #listed
\newcommand{\EE}{\mathbf{E}} % Space of smooth functions alt #listed
% ============================================
% CHAPTER 2: DISCRETE DUALITY
% ============================================
% --- From Affine Cubes ---
\newcommand{\BC}{\mathbf{B}} % Affine Cube space #listed
% --- From Cubes.md and affine cube space ---
\newcommand{\BB}{\mathbb{B}} % Boolean lattice #listed
\newcommand{\minelt}{\hat{0}} % Minimal element #listed
\newcommand{\maxelt}{\hat{1}} % Maximal element #listed
\newcommand{\sleq}{\subseteq} % Subset relation #listed
\newcommand{\drk}{\mathrm{rk_{\Delta}}} % Discrete rank #listed
\newcommand{\Cube}{\mathbf{Cube}} % Discrete cubes #listed
\newcommand{\aprod}{\star} % Anchored product of cubes #listed
\newcommand{\acoprod}{\Delta} % Anchored coproduct of cubes #listed
\newcommand{\tcoprod}{\Delta^\tau} % Transport coproduct of cubes #listed
\newcommand{\tprod}{\star^\tau} % Transport product of cubes #listed
\newcommand{\Part}{\mathbf{Part}} % Partitions of a set #listed
\newcommand{\vac}{{|0\rangle}} % Empty partition #listed
% --- From Filtered Vector Spaces.md ---
\newcommand{\gr}{\mathrm{gr}} % Graded/associated graded object #listed
% ============================================
% CHAPTER 3: ULTRA CALCULUS
% ============================================
\newcommand{\POS}{\mathbf{Pos}} % Growth domain spaces #listed
\newcommand{\U}{\mathbf{U}} % Ultra regulator quotient #listed
\newcommand{\IU}{\mathbb{U}} % Ultra regulator #listed
\newcommand{\IG}{\mathbb{G}} % Growth profile #listed
\newcommand{\Tame}{\mathbf{Tame}} % Tame growth functions #listed
\newcommand{\Scale}{\mathrm{Scale}} % Scaling operator #listed
\newcommand{\Bell}{\mathcal{B}} % Bell polynomials #listed
\newcommand{\uexp}{\exp_+} % Exponential generating series #listed
% --- Ultra Structures ---
\newcommand{\Sym}{\mathbf{S}} % Symmetric functions/algebra #listed
\newcommand{\SS}{\Sym} % Symmetric functions alt #listed
\newcommand{\SP}{\Sym^+} % Positive symmetric functions #listed
\newcommand{\SH}{\hat{\Sym}} % Completed symmetric functions #listed
\newcommand{\SPH}{\hat{\Sym}^+} % Completed positive symmetric #listed
% --- Ultra Operators ---
\newcommand{\MIX}{\mathrm{Mix}} % Mixing operator #listed
\newcommand{\BMIX}{\mathrm{BMix}} % Boolean mixing #listed
\newcommand{\TMIX}{\mathrm{TMix}} % Transport mixing #listed
\newcommand{\TBMIX}{\mathrm{TMix}} % Transport boolean mixing #listed
\newcommand{\TRANS}{\mathrm{Trans}} % Transport operator #listed
% --- Gauge & Equivalence ---
\newcommand{\gaugeleq}{\preccurlyeq} % Gauge less-or-equal #listed
\newcommand{\gaugeeq}{\asymp} % Gauge equivalence #listed
\newcommand{\gaugegeq}{\preccurlygeq} % Gauge greater-or-equal #listed
\newcommand{\tstar}{\circledast} % Tight star product #listed
% --- Forward Differences ---
\newcommand{\FD}{\blacktriangle} % Forward difference #listed
\newcommand{\fd}{\FD} % Forward difference alt #listed
\newcommand{\AC}{\square} % Associated character #listed
% ============================================
% OPERATORS (DeclareMathOperator)
% ============================================
\DeclareMathOperator{\Supp}{\mathrm{Supp}} % Support #listed
\DeclareMathOperator{\Alt}{\Lambda} % Alternating/exterior #listed
\DeclareMathOperator{\ad}{ad} % Adjoint representation #listed
\DeclareMathOperator{\ch}{ch} % Chern character #listed
\DeclareMathOperator{\td}{td} % Todd class #listed
\DeclareMathOperator{\TD}{TD} % Todd operator #listed
\DeclareMathOperator{\pr}{pr} % Projection #listed
\DeclareMathOperator{\Map}{Map} % Mapping space #listed
$$
(1) Theorem (Fundamental Theorem of Algebra).
Every polynomial of degree \(n\) with complex coefficients has exactly \(n\) complex roots, counted with multiplicity.
For a given polynomial \(p(x) = x^n + p_{n-1} x^{n-1} + \cdots + p_0\), we consider the family of polynomials \(p_t = t p + (1-t) q\) for \(t \in \mathbb{C}\).
Where \(p_0 = q\) is a polynomial with \(n\) distinct roots, e.g. \(q = x^n - 1\).
Proof.
Let \(X \subset \IC\) be the set of parameters \(t\) where \(p_t\) has at least one root.
By construction \(0 \in X\).
We will show that \(1 \in X\), by deforming the roots of \(q\) along \(p_t\) using Resultant techniques and the Implicit Function theorem, and leveraging the Cauchy bound on root location to show stability of roots under limits with bounded coefficients.
This shows that \(p\) has a single root \(r\), by splitting off a linear factor \(x-r\) and induction on the degree of \(p\) we conclude that \(p\) has \(n\) roots.
The set \(X \subset \IC\) is closed:
Let \(t_k\) be a sequence in \(X\) converging to a point \(t \in \mathbb{C}\). We need to show that \(t \in X\).
As \(t_k\) is bounded, we know that the coefficients of \(p_{t_k}\) are bounded by a constant \(M\).
By the Cauchy bound, all roots of \(p_{t_k}\) lie within the disk of radius \(1 + \max_i |p_{t_k,i}| \leq M + 1\).
Let \(r_k\) be a convergent sequence of roots of \(p_{t_k}\), and let \(r = \lim_{k \to \infty} r_k\).
Then \(\lim_{k \to \infty} p_{t_k}(r_k) = p_t(r)\) by continuity of \(p_t\), but \(p_{t_k}(r_k) = 0\), so \(p_t(r) = 0\). \(\square\)
Now consider \(\Delta(t) = Res(p_t, p_t')\) the discriminant of the polynomial \(p_t\).
Recall that the Resultant \(Res(p,q)\) is a polynomial in the coefficients of the polynomials \(p\) and \(q\)
and that \(Res(p,q) = 0\) if and only if the polynomials \(p\) and \(q\) have a common factor (\(gcd(p,q) \neq 1\)).
In particular \(\Delta(t)\) is a polynomial in \(t\), with \(\Delta(0) \neq 0\) as \(q\) has \(n\) distinct roots.
Let \(D = \{ t \in \mathbb{C} \mid \Delta(t) = 0 \}\), and let \(U = \mathbb{C} \setminus D\).
As complement of a finite set, \(U\) is connected open and dense in \(\IC\).
The set \(X \cap U \subset \IC\) is open:
Let \(t \in X \cap U\), we need to show that there is a neighborhood \(N\) of \(t\) such that \(N \subset X\).
Since \(t \in X\) we know that \(p_t\) has at least one root \(r\).
As \(t \in U\) we know that \(p_t'(r) \neq 0\), since otherwise \(p_t\) and \(p_t'\) would have a common factor.
By the implicit function theorem applied to \(F(x,t) = p_t(x)\), there exists a neighborhood \(N\) of \(t\) and a function \(r(\tau)\) defined on \(N\), with \(r(t) = r\) and \(p_\tau(r(\tau)) = 0\) for all \(\tau \in N\).
This shows that \(N \subset X\). \(\square\)
We conclude that \(X \cap U\) is open and closed in \(U\). As \(U\) is connected, it follows that \(X \cap U = U\).
Thus, \(X\) contains the open dense set \(U\), which implies that \(X\) is all of \(\IC\), and in particular \(1 \in X\).
History and Related Work
The Fundamental Theorem of Algebra has a long and contested history, with early attempts by d’Alembert, Euler, and Laplace, and more substantial proofs by Gauss (1799, 1816, 1849) and Argand (1806/1813). For surveys and historical accounts, see Remmert’s exposition [Remmert1991], the monograph of Fine–Rosenberger [FineRosenberger1997], and Gilain’s historical study [Gilain1991].
Since then, the theorem has continued to attract new proofs, ranging from analytic (Liouville, Rouché) to topological (winding numbers, degree arguments), constructive (Kneser [Kneser1939], Richman [Richman2000]), and elementary (Rio Branco de Oliveira [Oliveira2012], Basu [Basu2021]). This ongoing stream of contributions underscores both the theorem’s centrality and its pedagogical appeal.
The proof given here exploits a discriminant complement arguments: one shows that, away from parameters where the discriminant vanishes, roots continue locally by the implicit function theorem, while global existence follows from connectedness and a compactness/closedness input (here provided by Cauchy’s root bound). The same strategy has been independently used earlier by Pukhlikov–Pushkar (see [Conrad]) and in a recent blog post by Litt [Litt2016].
The point of view taken here is a particularly compact, one-dimensional variant, restricting the argument to a single pencil \(p_t = (1-t)q + tp\).
Comments