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Context

We take measurements from things.

We make pictures from that data.

We do offline analytics on that data.

We do stream-based analytics for real-time alerting.

Simple, right?



Constraints

Billions of unique things being measured.

Millions of measurements per second per thing.

Things can be disconnected for a while.

Multi-tenant.



Components

Message Queues

Storage operations

Storage performance

Analytics

Problems

Performance and isolation

Space, ops burden

performance, and scale

Streaming vs. historic, model, performance

Agenda
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Message Queues

More macroservice than microservice.

Components learn via control messages.

The streaming analytics and fault-detection services see 
measurement data.



The failure of RabbitMQ

All software will break outside of operating parameters.

RabbitMQ has/had:

1) poorly documented operating parameters
2) horrendous failure pathologies.

A failed data plane is disruptive.

A failed control plane is debilitating.
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Step 1

Separate our control plane and our data plane by running 
two completely independent RabbitMQ instances.

This successfully isolated tragedy in our environment to the 
data plane.
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Step 2

Authored and deployed fq for the data plane.

It is faster and more accommodating of our data patterns 
than Kafka.

If Kafka were available at the time, we’d have gone with 
that and not looked back… “good enough.”
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Tracking end-to-end latencies



Storage

At launch (2010), we stored metrics in a highly dense 
columnar format in PostgreSQL (similar to how Timescaledb 
works)

Operational burden upon node failure was too high.

Storage considerations were too inefficient.

All “fixable,” but it was clearly the wrong tool for the job.



Storage

We defined our own storage format.

• “NNT” statistical aggregate storing 7 aggregation facets per rollup.

• LMDB-backed block-extent format.

• OpenZFS safety and laz4 compression.

• 8.5 bits per facet in practice.



Storage

We defined our own storage format + histograms

• llhist a sparse 46k bin histogram format with an upper limit of 5% error.

• rocksdb stores time-series histograms in llhist format.



Storage

We built our own database: “snowth” now “IRONdb”

This was a huge endeavour with bold operational goals:

• Zero points of failure.
• Recovery and rebuild with no operator intervention.
• Resizing with minimal operator intervention.



Storage

Wait. Stop. Building a database is a cardinal sin.

Why build a DB when we’ve got:
InfluxDB, Cassandra, Riak, OpenTSDB, etc.?

1) It’s 2010
2) We realized our problem scope was smaller.

a) Incredibly predictable write patterns
b) Commutative operations



Storage

Performance, scale, and resiliency requirements:

1) Nodes on different continents
2) Full region failure
3) Uninterrupted ingest on failure
4) Uninterrupted read/analytics on failure
5) More than 1MM records/second/node sustained ingest





PostgreSQL



snowth



11 months of safety



Histogram instrumentation



Zipkin instrumentation
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Feature: Stream Analytics

Allow the user to:

• Alert on forecasted values
• Alert on histogram percentiles

...

• Alert on custom analytics transformations (CAQL)

...

• Compute anomaly detection on all incoming metrics



First Approach: Polling the DB

IRONdb

“stratcon” fq Alerting
broker

broker

Alerting
Pathway

poll

* Alerting component reaches out to IRONdb every minute
* Analytics transformations are computed on IRONdb from stored data

Tech: Java

Pros/Cons:
+ Simple
- High latency on metric data (seconds-minutes)
- Constant load on database
- Not suitable for alerting on all metrics



* New component “Beaker” executing stream transformations
* reads & writes data to fq

Tech: C++/luajit

Pros/Cons:
+ Minimally invasive architecture
+ Avoid load on IRONdb
+ Reuse existing analytics code-base (luajit)
- ...

Stream Analytics (2015): Beaker

“stratcon” fq Alerting
broker

broker “Beaker”
Stream 

Analytics

Alerting
Pathway



Performance of Beaker vs IRONdb

State update latency median: 15usec

Beaker: State Update Performance

CAQL latency median: 270msec

IRONdb: CAQL Query Performance



The Regrets of Beaker

(1) Minimal Architecture Changes =/= Minimal Product Changes

(2) Intransparent alerting behavior. Missing History.

(3) Underestimate development effort to build operations tooling

(4) Requirement Oversight: Cross metric aggregation



New CEO: “When can I sell this?”

New CTO: “Don’t break stuff.”

New Team: “What is OmniOS?”

Regrets of Beaker: Cultural Aspects 2015



Regrets of Beaker: Cultural Aspects 2016

New Old CEO: “We need to redo this.”

Old Team: “Yeah. It’s not pretty.”

New New CTO: “Why not re-use our broker tech?”



* Repurpose existing broker tech for stream analytics
* Publish results as metrics into the system

Tech: C/mtev/reconnoiter/luajit

Pros/Cons: 
+ Reuse existing analytics code-base (luajit)
+ Reuse existing server framework inc. ops tooling (libmtev)
+ No new concepts for the UI
- High observability needs

Stream Analytics (2016): CAQL Broker 

“stratcon” fq Alerting
broker

CAQL broker Alerting
Pathway



CAQL Broker: Observability is Key

- CAQL state is kept over days and weeks

- Many issues can’t be replicated in dev

> Need to understand the system while it’s running!

- Extensive logging of state changes

- Instrumentation (/stat.json, RED, USE)

- Introspection capabilities (telnet, web)



CAQL Broker: Monitoring



CAQL Broker: Self Monitoring



Log Analysis: “Poor man’s Splunk / ELK”

./harvest.sh caqlbroker{1..5}.dev.circonus.net

make log.sqlite

# Top-5 slow queries

sqlite3 log.sqlite ".mode line"  \

  ‘select duration, query from log order by duration desc limit 5’

# Duration histogram

sqlite3 log.sqlite ".mode csv" ‘select duration from log’ \

  | feedgnuplot --histogram 0 --binwidth 0.1 --with boxes



CAQL Broker: Check inspection



CAQL Broker: High Availability

* Oldest node sends data

* Checks are replicated among cluster nodes

* Versioning of checks is operator provided

* Network partitions result in double submissions (OK)

CAQL broker 
(uptime 1d, muted)

CAQL broker 
(uptime 1d, muted)

CAQL broker 
(uptime 5d, active)

CAQL broker 
(uptime 3d, muted)Heartbeats / Gossip



HA is a Game Changer for Ops

Without HA:

- Every update means downtime (1-3Min)

- Immediate rollback if any issue is hit (<5M)

- Try to reproduce in dev/stage

With HA:

- Deploy to standby node first

- Can debug stuff in prod for a good hour with low risk



CAQL Broker: Deployments gone wrong



Reminder: Don’t run GC ... ALL THE TIME.



Circonus Analytics Architecture 2018 
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Lessons Learned

• With time as a real imposed constraint,
your mistakes will include mistakes you knew would bite you. 
This is technical debt leveraged for time-to-market.

• Once you’ve been served a collection notice,
focus on operability with a higher priority that correctness;
you’re unlikely to get either perfect & operability will pay dividends sooner.

• Instrumenting systems and retaining performance data is the only way to 
know you’ve actually succeeded, so get on that.

• Build systems resilient enough to allow risky behavior in production up to 
an including developing in production.


