Q-

Q‘/ Context
We take measurements from things.
We make pictures from that data.

We do offline analytics on that data.

We do stream-based analytics for real-time alerting.

Simple, right?

Q‘/ Constraints
Billions of unique things being measured.
Millions of measurements per second per thing.

Things can be disconnected for a while.
Multi-tenant.

{

Q‘/ Agenda

Components

Message Queues
Storage operations
Storage performance
Analytics

Problems

Performance and isolation
Space, ops burden
performance, and scale
Streaming vs. historic, mode

¢

|, performance

/ CIRCONUS

d

w Architecture

Metrics
Broker
AP Web Ul Websopkets
real time
Streaming
Analytics
Data Collection
Alerting Fault Detection RabbitMQ fq
TSDB
IRONdb
metadata “snowth”
PKI Internal

CA Services

d

w Message Queues

More macroservice than microservice.

Components learn via control messages.
The streaming analytics and fault-detection services see
measurement data.

Q/ The failure of RabbitMQ

All software will break outside of operating parameters.
RabbitMQ has/had:

1) poorly documented operating parameters
2) horrendous failure pathologies.

A failed data plane is disruptive.

A failed control plane is debilitating.

q

N# Architecture

Metrics
Broker
API Web Ul Websockets
real time
Streaming
Analytics
Data Collection
Jda MebSiead
Alerting Fault Detection G
TSDB
IRONdb
metadata o
ch Internal

- Services

) Step 1

Separate our control plane and our data plane by running
two completely independent RabbitMQ instances.

This successfully isolated tragedy in our environment to the
data plane.

q

@ Architecture

Metrics
Broker

Websockets

API Web Ul :
real time

Streaming
Analytics

Data Collection

B

Jﬁéﬁ E AN
Alerting Fault Detection RabbitMQ RabbitMQ
(control) (data)
TSDB
IRONdb
metadata e
PKI Internal

CA Services

) Step 2

Authored and deployed fq for the data plane.

It is faster and more accommodating of our data patterns
than Kafka.

If Kafka were available at the time, we’d have gone with
that and not looked back... “good enough.”

d

w Architecture

Metrics
Broker
API Web Ul Websockets
real time
Streaming
Analytics
Data Collection
Alerting Fault Detection RabbitMQ fq
(control) (data)
TSDB
IRONdb
metadata cerowih”
PKI Internal

CA Services

|

4 Tracking end-to-end latencies

Original Graph +

ﬁ) CIRCONUS
\

‘,/ Storage

At launch (2010), we stored metrics in a highly dense

columnar format in PostgreSQL (similar to how Timescaledb
works)

Operational burden upon node failure was too high.
Storage considerations were too inefficient.

All “fixable,” but it was clearly the wrong tool for the job.

[

N Storage

We defined our own storage format.

® “NNT” statistical aggregate storing 7 aggregation facets per rollup.

® LMDB-backed block-extent format.
® OpenZFS safety and laz4 compression.

® 8.5 bits per facet in practice.

‘,/ Storage

We defined our own storage format + histograms

® |lhist a sparse 46k bin histogram format with an upper limit of 5% error.

® rocksdb stores time-series histograms in llhist format.

Q,/ Storage
We built our own database: “snowth” now “IRONdb”

This was a huge endeavour with bold operational goals:

e Zero points of failure.
 Recovery and rebuild with no operator intervention.
e Resizing with minimal operator intervention.

‘,/ Storage

Wait. Stop. Building a database is a cardinal sin.

Why build a DB when we’ve got:
InfluxDB, Cassandra, Riak, OpenTSDB, etc.?

1) It's 2010

2) We realized our problem scope was smaller.

a) Incredibly predictable write patterns
b) Commutative operations

‘,/ Storage

Performance, scale, and resiliency requirements:

Nodes on different continents

Full region failure

Uninterrupted ingest on failure

Uninterrupted read/analytics on failure

More than 1MM records/second/node sustained ingest

OO wWODN -
~— N ' N

*. Availability |
) »_7one 1
1ty

Lone2

q" CIRCONUS

/

N PostgreSQL

Original Graph + w
S0y
160
10006
500
It 2] Apr

] ‘
‘) CIRCONUS
4

(‘) snowth

Original Graph

ALE]

500G

4O

0

2007

G

F
Jan 2004y - Jul 2000 Jan 2010

Jul 2010 Jan 2011 Tul 2031 Jan 2012 Jul 2052

‘) CIRCONUS
\

U2 11 months of safety

Original Graph Graph - Snowth Space . + w

2500
200G
150G
100G

S04

Y
Oct 200 Jan 2010 Apr 2010 Jul 2010 Oct 2010 Jan 2011 Apr 2011 Tul 2041 Oct 2011 Jan 2013 Apr 2012 Jul 2012

] X
‘) CIRCONUS
“‘!/

|

¢

w) Histogram instrumentation

Latency of snowth.db.hist.60.get latency

Latency of put’latency

800p

o oom “) CIRCONUS

(J Zipkin instrumentation

v snowth-00011116: /rollup/(*([0-9a-FA-FJ{4}(?:[0-9a-fA-FJ{4}-}{4}[0-9a-TA-F]{12})/(.+)$) % Vet -
Trace Start: August 22, 2018 11:41 AM Duration: 0.77ms = Services: 2 = Depth: 5 Total Spans: 9

Oms 0.19ms 0.39ms 0.58ms 0.77ms

Service & Operation v > ¥ » O0ms 0.19ms 0.39ms 0.58ms 0.77ms

v = snowth-00011116 /rollup/(*([0-9a-fA-F|{4}(?:[0-9a-fA-F}{4}-X. ..
v snowth-00011116 eventer callback
v snowth-00011116 curl: request

<

snowth-00011114 /rollup/(*([0-9a-fA-FI{4}(?:[0-9. .. . 0.19ms

/rollup/(*([0-9a-fA-F]{4}(?:[0-9a-fA-F]{4}-){4}[0-9a-fA-F]{12})/(.+)$) Service: snowth-00011114 | Duration: 0.19ms Start Time: 0.25ms

> Tags: http.bytes out=469 http.status_code=200 http.hostname =127.0.0.1:11114 = http.method =GET ' http.uri = /rollup/85b75ea7-aa60-442e-afe4-d8eb69ffOcb8/nnt _...
> Process: ip=127.0.0.1

> Logs (2)
1
| snowth-00011114 eventer callback —
| snowth-00011114 eventer callback 0
| snowth-00011114 eventer callback '

snowth-00011116 eventer callback
snowth-00011116 eventer callback

] ‘
‘) CIRCONUS
4

d

w Circonus in 2010: No Analytics.

broker

broker

broker

broker

broker

fq

Alerting

“stratcon”

IRONdb

Web Ul

Alerting
Pathway

Graphing
Pathway

‘./ Feature: Stream Analytics

Allow the user to:

* Alert on forecasted values
e Alert on histogram percentiles

e Alert on custom analytics transformations (CAQL)

e Compute anomaly detection on all incoming metrics

Q, First Approach: Polling the DB

broker Alertin
> “stratcon” fq Alerting Pa thwag
broker y

poll

IRONdb

* Alerting component reaches out to IRONdb every minute
* Analytics transformations are computed on IRONdb from stored data

Tech: Java

Pros/Cons:

+ Simple

- High latency on metric data (seconds-minutes)
- Constant load on database

- Not suitable for alerting on all metrics

Stream Analytics (2015): Beaker

broker Alertin
> “stratcon” fq Alerting Pa thwag
broker y

“Beaker”
(W - Stream

Analytics

* New component “Beaker” executing stream transformations
* reads & writes data to fq

Tech: C++/luajit

Pros/Cons:

+ Minimally invasive architecture

+ Avoid load on IRONdb

+ Reuse existing analytics code-base (luajit)

]

Q‘) Performance of Beaker vs IRONdb

IRONdb: CAQL Query Performance

CAQL latency median: 270msec.

0.0 N —— o i) B s = i
700m 800m

200m 300m 400m 500m 600m

Beaker: State Update Performance

1200

mm_....é........ ._%_—._._.‘._._._. T o State updateilatency.median: .15u.sec .
800 : i | : : : :

B0

0500 | v vt o s v s m e 10 v i e e) v s

I R R L LT m e I I S - It 8 A e o S A A A A R R R I e e e T T T T T T T T TYTITTITYTYYT"YT "rrme

i i i i
0,0000010 0,0000100 0,0001000 0,0010000 0, 0100000

d

The Regrets of Beaker

(1) Minimal Architecture Changes =/= Minimal Product Changes
(2) Intransparent alerting behavior. Missing History.
(3) Underestimate development effort to build operations tooling

(4) Requirement Oversight: Cross metric aggregation

Regrets of Beaker: Cultural Aspects 2015

New CEO: “When can | sell this?”
New CTO: “Don’t break stuff.”

New Team: “What is OmniOS?”

Regrets of Beaker: Cultural Aspects 2016

New OIld CEO: “We need to redo this.”
Old Team: “Yeah. It's not pretty.”

New New CTO: “Why not re-use our broker tech?”

Stream Analytics (2016): CAQL Broker

CAQL broker .
. , _ Alerting

stratcon fq Alerting Path
broker athway

* Repurpose existing broker tech for stream analytics
* Publish results as metrics into the system

Tech: C/mtev/reconnoiter/luaijit

Pros/Cons:

+ Reuse existing analytics code-base (luajit)

+ Reuse existing server framework inc. ops tooling (libmtev)
+ No new concepts for the Ul

- High observability needs

“/ CAQL Broker: Observability is Key

- CAQL state is kept over days and weeks

- Many issues can’t be replicated in dev
> Need to understand the system while it’s running!
- Extensive logging of state changes

- Instrumentation (/stat.json, RED, USE)

- Introspection capabilities (telnet, web)

w CAQL Broker: Monitoring

Uptime in Days

12.

CPU Utilization %

Uptime

caqlbroker1-gcp-ia CPU Utilization

CPU Saturation

Active Checks

Messages IN

caqlbroker2-gep-ia CPU Utilization

« L

Metrics OUT

caqlbroker2-gcp-ia System Load

Pt At anetnhato A p o]

) rlL\,\ .Ulr’‘hTrlFlﬂpﬂv“fn

r J‘\ﬂ wavr,,{\(,zmw%“"rr%‘ /‘r’h"’\ﬂr"f’"%
=1
. g

]‘I‘J}I :‘ 1

Out of Memory in Memory Utilization Memory Saturation caqlbroker2-gcp-ia Memory Utilization caglbroker2-gcp-ia Memory Satur
HRS
Network Utilization Network Saturation q gep-ia Network L caglbroker2-gp-ia Network Satui
ﬂ T /Ty
- ‘qr\:i' 1l
1 T v =
IL UPII L e vl ™ e) e

A

N

CAQLBroker Test : 1+1

caql-broker test: uptime

CAQLBroker Test : Outlier Score

¥ CAQL Broker: Self Monitoring

CAQLBRoker Test : caql-metric

J_JJJJ J.J[‘ll_l’ JJL !

afl 1"] \\1,»Jl|u_l,], JL,

R | NIEEE TR (TR A |

Julzz Julgo Augz Augs Aug8 Awgu Augig Augiy Aug2o ul Augz Augs Aug8 Augu Auglg Augiy Aug2 ulz7 Jul ug2 Augs Aug8 Aug1g Augiy Auga 27 Julgo Augz Augs Auwg8 Augn ¢ Awiy Augzo
CAQLBroker Test : metric() CAQLBroker Test : search(cpu_idle) CAQLBroker Test : metriccluster() | histogram()
| \
Al ,,},VNJYAL_II' —| ‘
) 2 Y - .
ulz7 Julzo Augz Au AugS Augn Augig Awg1y Aug20 ulgo Augz Aug Aug 17 Aug 20 ulz7 Jul3o Augz Augs Aug8 Augu Awlg Au

Log Analysis: “Poor man’s Splunk / ELK”

./harvest.sh caqlbroker{1..5}.dev.circonus.net

make log.sqlite

Top-5 slow queries

sqlite3 log.sqlite ".mode line" '\

‘select duration, query from log order by duration desc limit 5’

Duration histogram
sqlite3 log.sqlite ".mode csv" ‘select duration from log’ \

| feedgnuplot --histogram © --binwidth 0.1 --with boxes

(‘) CAQL Broker: Check inspection

output[1] double 0.000000000000e+00

Q‘) Circonus CAQL Broker Checks &

VZoUECE/T-USUC-4CoU=-0UCI=90Uusc Z£09uu700 C_19UG_Z355ZUucCayr Caygr g._Cayr myTus
6971a639-d07d-466f-8dfb-f984c01703a0 c_1.168429::caql caql q._caql 1m/10s

Check Details Check Config

ID 6971a639-d07d-466f-8dfb- query metric:counter("eOcb68de

f984c01703a0 94d0-42a7-a46e-

Target q._caql dd808f460ce2""exchange

Name c_1.168429::caql |

Module caql delay(0,1d,2d,3d,4d,5d,6d)

IP | outlier:std_score(trim=1,

Period 1m normalize=2)

Timeout 10s

Filterset filterset_23419

Lastrun 2018/07/23 15:14:21 (3m25s ago)

Next run 2018/07/23 15:15:21

CIETTONN o vailabie | good |

Metrics

Name Type Value

{

* Oldest node sends data

CAQL broker
(uptime 1d, muted)

* Checks are replicated among cluster nodes

* Versioning of checks is operator provided

N2 CAQL Broker: High Availability

* Network partitions result in double submissions (OK)

CAQL broker
(uptime 1d, muted)

CAQL broker
(uptime 5d, active)

Heartbeats / Gossip

CAQL broker
(uptime 3d, muted)

HA is a Game Changer for Ops

Without HA:
- Every update means downtime (1-3Min)
- Immediate rollback if any issue is hit (<5M)

- Try to reproduce in dev/stage

With HA:
- Deploy to standby node first

- Can debug stuff in prod for a good hour with low risk

CAQL Broker: Deployments gone wrong

Original Graph + =
M B - -
100k
10k
1k
o.ak
0.01k
2.001k
Jun 4 0:00 Jun 4 12:00 Jun 5 0:00 Jun 512:00 Jun 6 0:00 Jun 6 12:00 Jun 7 0:00 Jun 712:00 Jun 8 0:00 Jun 8 12:00 Jungo:c
caglbroker1 Uptime
caqlbroker2 Uptime
Uptime Computed

100

N Reminder: Don’t run GC ... ALL THE TIME.

Y TN

case LUA_YIELD:

lua_gc(ri->coro_state, LUA_GCCOLLECT, 0);
mtev_lua_gc(ri->1mc);
return 0;

a

lAnh A A AL A A LA L LA A LA A A et LA R

=

s

16:00

“kernel
“intr
“user
“wait_io

“idle

0.79

0.12

4.74

94.15

20:00 Al

3 0:00 Aug 23 q4:00 Aug 23 8:00

Circonus Analytics Architecture 2018

pass Bl Ennline.

. Alerting
CAQL f Alertin
g ¢ Pathway
broker
broker “stratcon”
broker
broker IRONdb Web Ul Graphing
Pathway
- W T PN Lua extensions
: data flow >
------------------------------- o CAQL

0

Lessons Learned

* With time as a real imposed constraint,
your mistakes will include mistakes you knew would bite you.
This is technical debt leveraged for time-to-market.
* Once you’'ve been served a collection notice,
focus on operability with a higher priority that correctness;
you’'re unlikely to get either perfect & operability will pay dividends sooner.
* Instrumenting systems and retaining performance data is the only way to
know you’ve actually succeeded, so get on that.
* Build systems resilient enough to allow risky behavior in production up to
an including developing in production.

