
Monitorama PDX, June 29th 2016

Statistics for Engineers

Heinrich Hartmann, Circonus

@HeinrichHartman

Hi, I am Heinrich

· Lives in Munich, EU

· Refugee from Academia (Ph.D.)

· Analytics Lead at Circonus,

Monitoring and Analytics Platform

heinrich.hartmann@circonus.com

@HeinrichHartman(n)

https://twitter.com/heinrichhartman
https://twitter.com/heinrichhartman

@HeinrichHartman

#StatsForEngineers has been around for a while

[1] Statistics for Engineers @ ACM Queue

[2] Statistics for Engineers Workshop Material @ GitHub

[3] Spike Erosion @ circonus.com

[4] T. Schlossnagle - The Problem with Math @ circonus.com

[5] T. Schlossnagle - Percentages are not People @ circonus.com

[6] W. Vogels - Service Level Agreements in Amazon’s Dynamo/Sec. 2.2

[7] G. Schlossnagle - API Performance Monitoring @ Velocity Bejing 2015

Upcoming

[8] 3h workshop “Statistics for Engineers” @ SRECon 2016 in Dublin

http://queue.acm.org/detail.cfm?id=2903468
https://github.com/HeinrichHartmann/Statistics-for-Engineers
http://www.circonus.com/spike-erosion/
http://www.circonus.com/problem-math/
http://www.circonus.com/percentages-arent-people/
http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html
http://velocity.oreilly.com.cn/2015/ppts/API_Performance_Monitoring.pdf

@HeinrichHartman

A tale of API Monitoring

@HeinrichHartman

“Attic” - a furniture webstore

· Attic is a (fictional) furniture webstore

· Web API serving their catalog

· Loses money if requests take too long

Monitoring Goals

1. Measure user experience / quality of service

2. Determine (financial) implications of service degradation

3. Define sensible SLA-targets for the Dev- and Ops-teams

@HeinrichHartman

{1} External Monitoring

@HeinrichHartman

{1} External API Monitoring

Method

1. Make a synthetic request every minute
2. Measure and store request latency

Good for

· Measure Availability
· Alert on outages

Bad for

· Measuring user experience

Latencies of synthetic requests over time

@HeinrichHartman

<!> Spike Erosion </!>

· On long time ranges, aggregated / rolled-up data is commonly displayed

· This practice “erodes” latency spikes heavily!

· Store all data and use alternative aggregation methods (min/max) to get full picture, cf. [3].

1d max

all samples as
Heatmap / ‘dirt’

@HeinrichHartman

{2} Log Analysis

@HeinrichHartman

Method

Write to log file:

- time of completion,

- request latency,

and further metadata.

Discussion

· Rich information source for all kinds of analysis

· Easy instrumentation (printf)

· Slow. Long delay (minutes) before data is indexed and becomes accessible for analysis

· Expensive. Not feasibile for high volume APIs

{2} Log Analysis

Internal view of an API - “UML” version.

@HeinrichHartman

Numerical Digest: The Request-Latency Chart
a concise visualization of the API usage

Latency on the y-
axis

time the request was completed

@HeinrichHartman

Construction of the Request-Latency Chart (RLC)

Request Latency UML Diagram Request Latency Chart

@HeinrichHartman

Math view on APIs

(A) Latency

distribution

(B) Arrival/Completion times

(C) Queuing theory

@HeinrichHartman

“Requests are People”

If you care about your users, you care about their requests.

Every single one.

@HeinrichHartman

{3} Monitoring Latency Averages

@HeinrichHartman

{3} What are latency mean values?

reporting period

@HeinrichHartman

{3} Mean Request Latency Monitoring

Method

1. Select a reporting period (e.g. 1 min)

2. For each period report the mean latency

Pro/Con
+ Measure requests by actual people

+ Cheap to collect store and analyze

- Easily skewed by outliers at the high end

 (complex, long running requests)

- ... and the low end (cached responses)

“Measuring the average latency is like measuring the average temperature in a hospital.”
 -- Dogan @ Optimizely

@HeinrichHartman

{3} Mean Request Latency in practice

@HeinrichHartman

{3} Mean Request Latency - Robust Variants

1. Median Latency

- Sort latency values in reporting period

- The median is the ‘central’ value.

2. Truncated Means

- Take out min and max latencies in reporting

 period (k-times).

- Then compute the mean value

3. Collect Deviation Measures

- Avoid standdard deviations, use

- Use Mean absolute deviation Construction of the median latency

@HeinrichHartman

{4} Percentile Monitoring

@HeinrichHartman

{4} What are Percentiles?

@HeinrichHartman

{4} Percentile Monitoring

Method

1. Select a reporting period (e.g. 1 min)

2. For each reporting period measure the 50%, 90%, 99%, 99.9% latency percentile

3. Alert when percentiles are over a threshold value

Pro/Con
+ Measure requests by actual people

+ Cheap to collect store and analyze

+ Robust to Outliers

- Up-front choice of percentiles needed

- Can not be aggregated

{5} How it looks in practice

Latency percentiles 50,90,99 computed over 1m reporting periods

<!> Percentiles can’t be aggregated </!>

The median of two medians is NOT the total median.

If you store percentiles you need to:

A. Keep all your data. Never take average rollups!

B. Store percentiles for all aggregation levels separately, e.g.

○ per Node / Rack / DC

○ per Endpoint / Service

C. Store percentiles for all reporting periods you are interested in, e.g. per min / h / day

D. Store all percentiles you will ever be interested in, e.g. 50, 75, 90, 99, 99.9

Further Reading: [4] T. Schlossnagle - The Problem with Math @ circonus.com

http://www.circonus.com/problem-math/

@HeinrichHartman

{5} API Monitoring with Histograms

{5} API Monitoring with Histograms

Method

1. Divide latency scale into bands

2. Divide the time scale into reporting periods

3. Count the number of samples in each

latency band x reporting period

Discussion

· Summary of full RLC, with reduced precision

· Extreme compression compared to logs

· Percentiles, averages, medians, etc. can be derived

· Aggregation across time and nodes trivial

· Allows more meaningful metrics

 l
at

en
cy

sample count

time

{5} Histogram Monitoring in Practice
Histograms can be visualized as heatmaps.

Aggregate data from all nodes
serving “web-api”

.. across windows of 10min.

{5} Histogram Monitoring in Practice
All kinds of metrics can be derived from histograms

@HeinrichHartman

{6} The search for meaningful metrics

{6} Users offended per minute

{6} Total users offended so far

@HeinrichHartman

Takeaways

· Don’t trust line graphs (at least on large scale)

· Don’t aggregate percentiles. Aggregate histograms.

· Keep your data

· Strive for meaningful metrics

