Statistics for Engineers
Monitorama PDX, June 29th 2016

Heinrich Hartmann, Circonus

Q) ClIRCONUS
4

Hi, | am Heinrich

heinrich.hartmann@circonus.com

@HeinrichHartman(n)

@HeinrichHartman

Lives in Munich, EU &8
Refugee from Academia (Ph.D.)
Analytics Lead at Circonus,

Monitoring and Analytics Platform

Qi" CIRCONUS

https://twitter.com/heinrichhartman
https://twitter.com/heinrichhartman

#StatsForEngineers has been around for a while

NINININININ) [1] Statistics for Engineers @ ACM Queue

a Em q u E U E [2] Statistics for Engineers Workshop Material @ GitHub

[3] Spike Erosion @ circonus.com

Use-Case

[4] T. Schlossnagle - The Problem with Math @ circonus.com

STATISTICS

[5] T. Schlossnagle - Percentages are not People @ circonus.com
The Hub of

Soft
FUR Development [6] W. Vogels - Service Level Agreements in Amazon’s Dynamo/Sec. 2.2

ENGINEERS | ...

| omega o [7] G. Schlossnagle - API Performance Monitoring @ Velocity Bejing 2015

Kubernetes |

Upcoming

[8] 3h workshop “Statistics for Engineers” @ SRECon 2016 in Dublin

Complete table of contents on the following two pages

@HeinrichHartman Qh} CIRCONUS

http://queue.acm.org/detail.cfm?id=2903468
https://github.com/HeinrichHartmann/Statistics-for-Engineers
http://www.circonus.com/spike-erosion/
http://www.circonus.com/problem-math/
http://www.circonus.com/percentages-arent-people/
http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html
http://velocity.oreilly.com.cn/2015/ppts/API_Performance_Monitoring.pdf

A tale of APl Monitoring

0
@HeinrichHartman Qﬁ} CIRCONUS

“Attic” - a furniture webstore

Atticis a (fictional) furniture webstore
Web API serving their catalog

Loses money if requests take too long
Monitoring Goals

1. Moeasure user experience / quality of service
2. Determine (financial) implications of service degradation

3. Define sensible SLA-targets for the Dev- and Ops-teams

@HeinrichHartman

(], ™
J) CIRCONUS
Qt/

{1} External Monitoring

Q) ClIRCONUS
4

{1} External APl Monitoring

Method

1. Make asynthetic request every minute
2. Measure and store request latency

Good for

Measure Availability
Alert on outages

Bad for

Measuring user experience

@HeinrichHartman

Original Graph

P it Y
3 L °.0 I
annr
30 e
25
15 il
100 i H
4:00 4:3 5:00 5:30 6:00 6:30 7:00 7:30
5] metric:average(<...>, "GET "/ “duration”)

Latencies of synthetic requests over time

i
Qi) CIRCONUS

<!> Spike Erosion </!>

Original Graph + =
] 1d max
e i T i [N o w NS (0 PO [S i N
X i
;_'me“' UU’ j\r-"-r'LLh'L j"‘_‘]"L'|__/'-V'L;]jL|‘-H‘*J_ MI]PLJLF Iul 'J Tr'J ‘L_q‘ J‘LJ-‘,‘J-JUL_,"[J‘\[“ vaL/V J_"_r—;L—LJ- U L-[,lr'l_\‘_’\/‘rm;rlf "L-(F ﬁJ‘J‘JLr‘ J“J—l _’r,-,J'LJ'-.J:L __[¥ Jdlﬂ.’“ﬂ-ll,l ﬂ"ﬂ'l _I"I-:L.L JyLann e Ay “"‘”J—"'Iﬂ LU
Apr 16 Apri8 Apr 20 Apr 2z Apr2q Apr26 Apr 28 Apr 3o May 2 May 4 May 6
. . . all samples as
On long time ranges, aggregated / rolled-up data is commonly displayed Heatmap / dirt
This practice “erodes” latency spikes heavily!

Store all data and use alternative aggregation methods (min/max) to get full picture, cf. [3].

@HeinrichHartman

T
&H} CIRCONUS

{2} Log Analysis

T
&H} CIRCONUS

{2} Log Analysis

Method
Write to log file: | :
[[,\\
- time of completion, V| :{ : ,Rﬂqm{s
- request latency, 5 e
and further metadata. >{, ;
I

Discussion Internal view of an API - “UML” version.

Rich information source for all kinds of analysis

Easy instrumentation (printf)

Slow. Long delay (minutes) before data is indexed and becomes accessible for analysis
Expensive. Not feasibile for high volume APls

(], ™
@HeinrichHartman Qtj CIRCONUS

Numerical Digest: The Request-Latency Chart

a concise visualization of the APl usage

Latency on the y- Tegoor by
axis
Y Cowrl{l"(r-s
E3W 3

time the request was completed

@HeinrichHartman Qﬁ* CIF!CDN US

Construction of the Request-Latency Chart (RLC)

LOA‘\’?\« ()/

J ’ * fRa JW 5{3 /
—_ ! 1= ‘ Ve J
ii | i ‘ i /}zqvc s

> 1
{wt

P e

Request Latency UML Diagram Request Latency Chart

@HeinrichHartman 51} CIRCON US

Math view on APls

rll;"»'wl')
(A) Latency
distribution (C) Queuing theory
Pegoak
x P X x ¥ XX X X XX X x X M ’(owrhlltm
it

(B) Arrival/Completion times

@HeinrichHartman 51} CIF!CDN US

“Requests are People”

25 g0 flquwlo
X - - o o
L_J & - =
= - -
” CO\anl-(l"(r-\
RSy

If you care about your users, you care about their requests.

Every single one.

@HeinrichHartman ‘41; CIF%CDN US

{3} Monitoring Latency Averages

(|
@HeinrichHartman Qﬁ) CIRCONUS

{3} What are latency mean values?

@HeinrichHartman

A _cxlwc)/

pA

T

;

reporting period

{Dcirconus

{3} Mean Request Latency Monitoring

Method

1. Select areporting period (e.g. 1 min)
2. Foreach period report the mean latency

Pro/Con

+ Measure requests by actual people

+ Cheap to collect store and analyze

- Easily skewed by outliers at the high end
(complex, long running requests)

- ...and the low end (cached responses)

Xy,

‘ Liae

“Measuring the average latency is like measuring the average temperature in a hospital.”

@HeinrichHartman

-- Dogan @ Optimizely

Qy) CIRCONUS

{3} Mean Request Latency in practice

Original Graph
8o
60
40
. “ 1 |

100
O | Jun 262016, 19:10 (1M)
metric:histogram(<...>,"web-api") | histogram:mean() 0

@HeinrichHartman qp CIRCONUS

{3} Mean Request Latency - Robust Variants

1. Median Latency
- Sort latency values in reporting period
- The medianis the ‘central’ value.

2. Truncated Means
- Take out min and max latencies in reporting
period (k-times).

- Then compute the mean value
3. Collect Deviation Measures ‘ I [[I
- Avoid standdard deviations, use
- Use Mean absolute deviation Construction of the median latency

@HeinrichHartman Q!} CIF!C:DN US

{4} Percentile Monitoring

Q) ClIRCONUS
4

{4} What are Percentiles?
QM(L«CLH“")

AL&L‘MC/ #+0 <17
: L P(11)

H1 <10
1 T2q0n T

nz | 225 T(#S5)
HTF+ < #5%

s

@HeinrichHartman qlp CIRCONUS

{4} Percentile Monitoring

Method

1. Select areporting period (e.g. 1 min)
2. Foreachreporting period measure the 50%, 90%, 99%, 99.9% latency percentile
3. Alert when percentiles are over a threshold value

Pro/Con

+ Measure requests by actual people

+ Cheap to collect store and analyze

+ Robust to Outliers

- Up-front choice of percentiles needed
- Can not be aggregated

(], ™
@HeinrichHartman &k) CIRCONUS

{5} How it looks in practice

i MR Jmm UM

Latency percentiles 50,90,99 computed over 1m reporting periods

% CIRCONUS

<!> Percentiles can’t be aggregated </!>

The median of two medians is NOT the total median.

If you store percentiles you need to:
A. Keep all your data. Never take average rollups!
B. Store percentiles for all aggregation levels separately, e.g.
o per Node /Rack/DC
o per Endpoint/ Service
C. Store percentiles for all reporting periods you are interested in, e.g. per min / h / day
D. Store all percentiles you will ever be interested in, e.g. 50, 75, 90, 99, 99.9

Further Reading: [4] T. Schlossnagle - The Problem with Math @ circonus.com ‘; CIRCONUS

http://www.circonus.com/problem-math/

{5} APl Monitoring with Histograms

i
Qi) CIRCONUS

{5} APl Monitoring with Histograms

Method
1. Divide latency scale into bands

latency

2. Divide the time scale into reporting periods
3. Count the number of samples in each

latency band x reporting period

Discussion
Summary of full RLC, with reduced precision

Extreme compression compared to logs

time
S
rd

IR
S— e
e

o

Percentiles, averages, medians, etc. can be derived

Aggregation across time and nodes trivial S
sample count

Allows more meaningful metrics

d) CIRCONUS
()

{5} Histogram Monitoring in Practice

Histograms can be visualized as heatmaps.

Original Graph
8o

339 I
60 |
. 3

8o

40

20:00 21:00 22:00 23:00 000 1:00 2!00

wﬂ

] search:metric:histogram("(tag:web-api)”) | histogram:window(10M) [13 - 14) 1449 of 10932 samples - 58% 29%

Aggregate data from all nodes

ST .. across windows of 10min.
serving “web-api

{

T

f} CIRCONUS

{5} Histogram Monitoring in Practice

All kinds of metrics can be derived from histograms

Original Graph o
8o 1K

= — JULﬂ i

40

2
pr—

~

—

A e

20:00 21:00 22:00 23!00 0:00 1:00 2:00

metric:histogram(<...>,"web-api") | histogram:window(10M) | histogram:mean() 26.318441885296

metric:histogram(<...>,"web-api”) | histogram:window(10M) | histogram:percentile(50, 90, 99) 15.038461538462, 29.508074534161, 399.6
I metric:histogram(<...>,"web-api”) | histogram:window(10M) | histogram:rate() 218.53333333333

metric:histogram(<...>,"web-api") [46 - 47) 1 of 1270 samples - 95% m 4%

qi'a CIRCONUS

{6} The search for meaningful metrics

(|
@HeinrichHartman Qﬁ) CIRCONUS

{6} Users offended per minute

8o

20

0 fea ol - N arl nan
20:00 21:00 22:00 23:00 0:00 1:00 2:00

~. [LJR @ metric:histogram(<...>,"web-api') %)
B OOr @ 4 2 X v
o

. L[Rl & metriczhistogram(<...>,"web-api") | histogam:count_above(40)

qll, CIRCONUS

{6} Total users offended so far

8o gk
///——-'_’_——'_’d_—A——
60 // 3k
7
40 // 2k
20 // 1k
el —— P — P ¥ |
2000 21:00 22:00 23100 Q00 1;00 2100

e R @) metric:histogram(<...>,"web-api") 2 X v

= R @) 40// latency limit @ X v

:Ef L[R] @ metric:histogram(<...>,"web-api") | histogam:count_above(40) // number of users offended per minute Q@ X v

-::: L[R] @ metric:histogram(<...>,"web-api”) | histogam:count_above(40) | integrate() // total # of users offended 2 X v

qi'a CIRCONUS

Takeaways

Don’t trust line graphs (at least on large scale)
Don’t aggregate percentiles. Aggregate histograms.
Keep your data

- Strive for meaningful metrics

@HeinrichHartman QL;} CIRCONUS

