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A tale of APl Monitoring
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“Attic” - a furniture webstore

Atticis a (fictional) furniture webstore
Web API serving their catalog

Loses money if requests take too long
Monitoring Goals

1. Moeasure user experience / quality of service
2. Determine (financial) implications of service degradation

3. Define sensible SLA-targets for the Dev- and Ops-teams
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{1} External Monitoring
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{1} External APl Monitoring

Method

1. Make asynthetic request every minute
2. Measure and store request latency

Good for

Measure Availability
Alert on outages

Bad for

Measuring user experience
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Latencies of synthetic requests over time
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<!> Spike Erosion </!>
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On long time ranges, aggregated / rolled-up data is commonly displayed Heatmap / dirt
This practice “erodes” latency spikes heavily!

Store all data and use alternative aggregation methods (min/max) to get full picture, cf. [3].
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{2} Log Analysis
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{2} Log Analysis

Method
Write to log file: | :
[ [ ,\\
- time of completion, V| :{ : ,Rﬂqm{s
- request latency, 5 e
and further metadata. >{, ;
I

Discussion Internal view of an API - “UML” version.

Rich information source for all kinds of analysis

Easy instrumentation (printf)

Slow. Long delay (minutes) before data is indexed and becomes accessible for analysis
Expensive. Not feasibile for high volume APls
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Numerical Digest: The Request-Latency Chart

a concise visualization of the APl usage

Latency on the y- Tegoor by
axis
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time the request was completed
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Construction of the Request-Latency Chart (RLC)
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Math view on APls
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(B) Arrival/Completion times
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“Requests are People”
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If you care about your users, you care about their requests.

Every single one.
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{3} Monitoring Latency Averages
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{3} What are latency mean values?
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{3} Mean Request Latency Monitoring

Method

1. Select areporting period (e.g. 1 min)
2. Foreach period report the mean latency

Pro/Con

+ Measure requests by actual people

+ Cheap to collect store and analyze

- Easily skewed by outliers at the high end
(complex, long running requests)

- ...and the low end (cached responses)

Xy,

‘ Liae

“Measuring the average latency is like measuring the average temperature in a hospital.”

@HeinrichHartman

-- Dogan @ Optimizely
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{3} Mean Request Latency in practice

Original Graph
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{3} Mean Request Latency - Robust Variants

1. Median Latency
- Sort latency values in reporting period
- The medianis the ‘central’ value.

2.  Truncated Means
- Take out min and max latencies in reporting
period (k-times).

- Then compute the mean value
3. Collect Deviation Measures ‘ I [ [ I
- Avoid standdard deviations, use
- Use Mean absolute deviation Construction of the median latency
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{4} Percentile Monitoring
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{4} What are Percentiles?
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{4} Percentile Monitoring

Method

1. Select areporting period (e.g. 1 min)
2. Foreachreporting period measure the 50%, 90%, 99%, 99.9% latency percentile
3. Alert when percentiles are over a threshold value

Pro/Con

+ Measure requests by actual people

+ Cheap to collect store and analyze

+ Robust to Outliers

- Up-front choice of percentiles needed
- Can not be aggregated
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{5} How it looks in practice
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Latency percentiles 50,90,99 computed over 1m reporting periods
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<!> Percentiles can’t be aggregated </!>

The median of two medians is NOT the total median.

If you store percentiles you need to:
A. Keep all your data. Never take average rollups!
B. Store percentiles for all aggregation levels separately, e.g.
o per Node /Rack/DC
o per Endpoint/ Service
C. Store percentiles for all reporting periods you are interested in, e.g. per min / h / day
D. Store all percentiles you will ever be interested in, e.g. 50, 75, 90, 99, 99.9

Further Reading: [4] T. Schlossnagle - The Problem with Math @ circonus.com ‘; CIRCONUS


http://www.circonus.com/problem-math/

{5} APl Monitoring with Histograms
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{5} APl Monitoring with Histograms

Method
1. Divide latency scale into bands

latency

2. Divide the time scale into reporting periods
3.  Count the number of samples in each

latency band x reporting period

Discussion
Summary of full RLC, with reduced precision

Extreme compression compared to logs
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Percentiles, averages, medians, etc. can be derived

Aggregation across time and nodes trivial S
sample count

Allows more meaningful metrics
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{5} Histogram Monitoring in Practice

Histograms can be visualized as heatmaps.
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{5} Histogram Monitoring in Practice

All kinds of metrics can be derived from histograms
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metric:histogram(<...>,"web-api") | histogram:window(10M) | histogram:mean() 26.318441885296

metric:histogram(<...>,"web-api”) | histogram:window(10M) | histogram:percentile(50, 90, 99) 15.038461538462, 29.508074534161, 399.6
I metric:histogram(<...>,"web-api”) | histogram:window(10M) | histogram:rate() 218.53333333333

metric:histogram(<...>,"web-api") [46 - 47) 1 of 1270 samples - 95% m 4%

qi'a CIRCONUS



{6} The search for meaningful metrics
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{6} Users offended per minute
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{6} Total users offended so far
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Takeaways

Don’t trust line graphs (at least on large scale)
Don’t aggregate percentiles. Aggregate histograms.
Keep your data

- Strive for meaningful metrics
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