

Statistics for Engineers

SRECon EMEA 2023 Heinrich Hartmann | zalando.de | @HeinrichHartmann

@HeinrichHartmann | Statistics for Engineers | SRECon EMEA 2022

Hi, I'm Heinrich

Bio

Data Scientist @

Mathematician @

The University of Bonn Doctor of Philosophy (PhD), Matchematik 2008 - 2011

Talks & Publications

- Statistics for Engineers (SRECon 2015..2022)
- How to measure Latency (P99 Conf 21)
- State of the Histogram (SLOConf 2021)
- Latency SLOs Done Right (FOSDEM 2019)
- Circllhist A Histogram Data Structure (arxiv)
- blog: <u>heinrichhartmann.com</u>
- twitter: <u>@HenrichHartmann</u>

@HeinrichHartmann | Statistics for Engineers | SRECon EMEA 2023

Statistics for Engineers

- **#** Visualisations
- # Summary Statistics
- # SLOs
- **#** Sampling

@HeinrichHartmann | Statistics for Engineers | SRECon EMEA 2022

Visualizations

Example Dataset - Normal Noise

Example Dataset - Request Rates

Example Dataset - Request Latencies

Example Dataset - Request Latencies over Time

API Latencies over a 24h period

Example Dataset - Request Latencies over Time

API Latencies over a 24h period

Density Heatmap

Example Dataset - Request Latencies over Time

50.0 44.4 -38.9 33.3 27.8 -22.2 16.7 11.1 5.6 0.0 -10 20 19 21 22 23 15 17 18 Ó

Time (h of day)

@HeinrichHartmann | Statistics for Engineers | SRECon EMEA 2023

Latency

Grafana Histograms

source: https://grafana.com/docs/grafana/latest/fundamentals/intro-histograms/

Production Example - Request Latencies over Time

@HeinrichHartmann | Statistics for Engineers | SRECon EMEA 2022

Summary Statistics

@HeinrichHartmann | Statistics for Engineers | SRECon EMEA 2023

Aggregating Telemetry Data

- Across Time (Graphs, SLOs)
- Across Hosts (www-*)
- Across Endpoints (/, /posts, /archive)

AVERAGES

$$\mu = mean(X) = rac{1}{n}\sum_{i=1}^n x_i.$$

Normal Noise

Request Rates

Request Latency

Can you spot the average?

Spike Erosion - Full Picture

more on <u>blog.circonus.com</u> - Show me the Data (2016)

Example Dataset - Request Latencies over Time

API Latencies over a 24h period

Example Dataset - Request Latencies Mean Values

Latency

@HeinrichHartmann | Statistics for Engineers | SRECon EMEA 2022

"

"Looking at your average latency is like measuring the average temperature in a hospital."

@HeinrichHartmann | Statistics for Engineers | SRECon EMEA 2023

Averages

- Most data we see on graphs is averaged: Be aware of Spike Erosion.
- Averages are easy to compute and mergeable
- Looking at average latency has little value

MEDIAN

Median Definition

Median Definition

178 values

178 values

Where goes the Median?

Median Definition

Summary Statistic - Medians

Median

Normal Noise

Request Rates

Request Latency

Example Dataset - Request Latencies over Time

Median

Example Dataset - Request Latencies Mean Values

@HeinrichHartmann | Statistics for Engineers | SRECon EMEA 2023

Median - Take Aways

- Median values give "central representatives" of a data-set
- Medians are robust to outliers
- Fact: Medians are not easily mergeable

PERCENTILES

p90 Example

Percentile Definition

Percentile Special Cases

- → p0 = Minimum
- → p50 = Median
- → p100 = Maximum

Percentile Definition

Where goes the p90?

Lots of choices found in the wild

more on heinrichhartmann.com - Ouantiles

The estimate types and interpolation schemes used include:

Туре	h	Q_p
R-1, SAS-3, Maple-1	Np	$x_{\lceil h \rceil}$
R-2, SAS-5, Maple-2, Stata	Np + 1/2	$(x_{[h-1/2]} + x_{[h+1/2]}) / 2$
R-3, SAS-2	Np - 1/2	$x_{\lfloor h \rfloor}$
R-4, SAS-1, SciPy-(0,1), Maple-3	Np	
R-5, SciPy-(1/2,1/2), Maple-4	Np + 1/2	
R-6, Excel, Python, SAS-4, SciPy-(0,0), Maple-5, Stata-altdef	(N+1)p	$x_{\lfloor h \rfloor} + (h - \lfloor h \rfloor) (x_{\lfloor h \rfloor} - x_{\lfloor h \rfloor})$
R-7, Excel, Python, SciPy-(1,1), Maple-6, NumPy, Julia	(N-1)p+1	
R-8, SciPy-(1/3,1/3), Maple-7	(N+1/3)p+1/3	
R-9, SciPy-(3/8,3/8), Maple-8	(N+1/4)p+3/8	

Wikipedia - Percentiles

Sample Quantiles in Statistical Packages

Rob J. HYNDMAN and Yanan FAN

There are a large number of different definitions used for sample quantiles in statistical computer packages. Often within the same package one definition will be used to compute a quantile explicitly, while other definitions may be used when producing a boxplot, a probability plot, or a QQ plot. We compare the most commonly implemented sample quantile definitions by writing them in a common notation and investigating their motivation and some of their properties. We argue that there is a need to adopt a standard definition for sample quantiles so that the same answers are produced by different packages and within each package. We conclude by recommending that the median-unbiased estimator be used because it has most of the desirable properties of a quantile estimator and can be defined independently of the underlying distribution.

Statistical computer packages.

1. INTRODUCTION

The quantile of a distribution is defined as

 $Q(p) = F^{-1}(p) = \inf\{x; F(x) > p\}, \quad 0$

where F(x) is the distribution function. Sample quantiles provide nonparametric estimators of their population counterparts based on a set of independent observations $\{X_1,\ldots,X_n\}$ from the distribution F. Let $\{X_{(1)},\ldots,X_{(n)}\}$ denote the order statistics of $\{X_1, \ldots, X_n\}$, and let $\hat{Q}_t(p)$ denote the ith sample quantile definition.

One difficulty in comparing quantile definitions is that P1: $\hat{Q}_i(p)$ is continuous. there is a number of equivalent ways of defining them. However, the sample quantiles that are used in statistical P3: $Freq(X_k \leq \hat{Q}_i(p)) = Freq(X_k \geq \hat{Q}_i(1-p))$. packages are all based on one or two order statistics, and P4: Where $\hat{Q}_{j}^{-1}(x)$ is uniquely defined,

can be written as

 $\hat{Q}_i(p) = (1 - \gamma)X_{(i)} + \gamma X_{(i+1)}$

where
$$\frac{j-m}{n} \le p < \frac{j-m+1}{n}$$
 (1)

for some $m \in \mathbb{R}$ and $0 \le \gamma \le 1$. The value of γ is a function of $j = \lfloor pn + m \rfloor$ and g = pn + m - j. Here, $\lfloor u \rfloor$ denotes the largest integer not greater than u; later we shall use $\begin{bmatrix} u \end{bmatrix}$ to denote the smallest integer not less than u.

We consider estimators of the form (1), including some that are not found in statistical packages. There have been several other nonparametric quantile estimators proposed that are not of the form (1) (e.g., Harrell and Davis 1982; Sheather and Marron 1990), but these are not implemented in widely available packages and so are not considered here. We also exclude sample quantiles that are not defined for all p including hinges and other letter values (Hoaglin 1983) and related methods (Freund and Perles 1987).

A closely related problem is the selection of plotting posi-KEY WORDS: Percentiles; Quartiles; Sample quantiles; tion in a quantile plot in which $X_{(k)}$ is plotted against p_k or in a quantile-quantile plot in which $X_{(k)}$ is plotted against $G^{-1}(p_k)$ where G is a distribution function. Various rules for pk have been suggested (see Cunnane 1978; Harter 1984; Kimball 1960; Mage 1982). Each plotting rule corresponds to a sample quantile definition by defining $\hat{Q}_i(p_k) = X_{(k)}$ and using linear interpolation for $p \neq p_k$. However, the criteria by which a plotting position is chosen (e.g., the five postulates of Gumbel 1958, pp. 32-34 or the three purposes of Kimball 1960) may be quite different from the criteria for choosing a good sample quantile definition.

> We compare sample quantile definitions of the form (1) by describing their motivation and whether or not they pos-

> > Table 1. Six Desirable Properties for a Sample Quantile

Hyndman, Fan (1996)

P2: $Freq(X_k \leq \hat{Q}_i(p)) \geq pn$

Summary Statistic - Percentile

Latency Percentiles

API Latencies over a 24h period

Latency Percentiles - over time

Example - Production View - Request Latency over Time

Aggregated Percentiles

Don't average percentiles!

(... and expect the results to be something meaningful)

Distributions with the same p90

How to do better? Use Histogram data-structures!

- Prometheus Sparse Histograms (see Björn Rabenstein's Talk!)
- OTelemetry Exponential Histograms (new!)
- <u>HDR Histogram</u> (Tene @ Aszul)
- <u>T-Digest</u> (Dunning @ Dynatrace)
- OpenHistogram (Schlossnagle, @ Circonus)
- DD/<u>UUD</u>-Sketch (Masson, Rim, Lee @ Data Dog)

Percentiles - Take Aways

- Percentiles generalize min/max/median
- Percentiles (p90, p99, p99.9) are used to describe latency
- Percentiles can't be aggregated (need histograms for this!)

@HeinrichHartmann | Statistics for Engineers | SRECon EMEA 2022

SLOs

SLO Goals

Steer engineering investments into reliability using data.

SRE Triangle

SLO Concepts

SLI = Reliability KPI

= Number between 0..1 that measures reliability of a given service over a managerial time horizon (i.e. 4 weeks).

- SLO = Reliability Objective
 - = Number between 0..1 that quantifies the degradation of service that is acceptable for business and customers, as threshold on an SLI.

Event Based SLIs

SLI =

good events over past 4 weeks

total events over past 4 weeks

Availability SLIs

- Synthetic Probe SLI = # successful probe runs in 4 weeks / # total probe runs
- 2. Error Rate SLI = # good responses over 4 past weeks / # total requests over 4 past weeks
- 3. Error Rate SLI measured on client (mobile, web)

@HeinrichHartmann | Statistics for Engineers | SRECon EMEA 2023

"Latency" Type SLI Types

Better with Histograms

Latency SLI = # successful requests served within 200ms in 4w / # successful requests in 4w

Freshness SLI = # events ingested within 120 seconds in 4w / # events invested in 4w

Execution SLI = # job executions completed within 5 seconds in 4w / # job executions in 4w

Event Based SLIs

SLI =

good events over past 4 weeks

total events over past 4 weeks

Good and Bad Events Aggregated over 1min

SLO on the Linear Reliability Scale

The 9's Scale for SLI/SLO Values

#-Nines = - Log10(1 - SLI)

Good and Bad Events Good 30 Bad 20 Count 10 0 2023-08-11 2023-08-13 2023-08-15 2023-08-17 2023-08-19 2023-08-21 Success and Error Rate 1.00 Success Rate 0.75 Error Rate Rate 8 0.25 0.00 2023-08-11 2023-08-13 2023-08-15 2023-08-17 2023-08-19 2023-08-21 SLI #-Nines 1 0 2023-08-11 2023-08-13 2023-08-15 2023-08-17 2023-08-19 2023-08-21 SLI on #-9 Scale

The Error Budget Scale

- Error Budget = 100% *Perfect Reliability (SLI = 100%)*
- Error Budget > 0% *Reliability within SLO*
- Error Budget = 0% *Reliability at SLO (SLI = SLO)*
- Error Budget < 0% SLO violated

Error Budget Formula

$$\text{Error Budget} = \frac{\text{SLI} - \text{SLO}}{100\% - \text{SLO}}$$

Error Budget Formula - for event based SLOs

Error Budget =
$$\frac{(1-SLO) * (\# \text{ total events}) - (\# \text{ bad events})}{(1-SLO) * (\# \text{ total events})}$$

(# acceptable bad events) - (# bad events)

(# acceptable bad events)

Steering with SLOs - Example

• **GREEN** Error Budget > 20%

No investment in reliability needed.

• AMBER Error Budget in 0% .. 20%

Reliability needs attention. Increase testing efforts.

• **RED** Error Budget < 0%

Investments in reliability needed. Stop Deployments.

Alerting on SLOs

- SLI measure **Symptoms** Experienced by user
- SLI can be used as a high-quality alerting signal
- + Few false positives
- - Alerts only fire once user experience is already degraded

Changes to Error Budget come from two sides

There is a constant C depending on the SLO and the average request rate, so that

ErrorBudget(t + 1 min) - ErrorBudget(t) \approx C (# good events in A) - C (# good events in B)

Burn Rates

Burn rates quantify impact of events in last minute (A) to error budget.

- Burn Rate = 0 No bad events in last minute
- Burn Rate < 1 Error budget is not in danger
- Burn Rate = 1 Error budget will be exactly depleted when sustained
- Burn Rate > 1 Error budget will be exceeded when sustained

Naive Burn Rate

Naive Burn Rate = "Compare current error rate to SLO"

= (error rate over last minute) / (allowable error rate)

= (# good events) / (# total events) / (1 - SLO)

Total Burn Rate

Total Burn Rate = "How fast are we burning error budget?"

= (bad events over last min) / (error budget for each min)

(#bad events over last min)

((# events over 4 weeks) / (#min in 4 weeks)) *(1-SLO)

Multi "Burn Rate" Alerts from the Book

- Paging Alert if 2% of error budget consumed in 1h
- Paging Alert if 5% of error budget consumed in 5h
- Notification if 10% of error budget consumed in 3d

Translate into conditions on Burn Rate

SLO based Alerting Rule

Alert if 2% error budget consumed in 1h

 \Leftrightarrow Alert if (1h total burn rate) > 2% * (#h in 4 weeks) = 13.4

SLO based Alerting Rule

Assume that **request rate is constant**, then:

Alert if 2% error budget consumed in 1h

 \Leftrightarrow Alert if (1h naive burn rate) > 2% * (#h in 4 weeks) = 13.4

⇔ Alert if (error rate over past hour) > 13.4 * (1-SLO)

Good and Bad Events

Take Aways

- SLOs are good if they are used for Steering Engineering Investments
- Error Budgets are re-scaled SLIs
- Burn rate quantify changes in SLI caused by current events
- SLOs give effective alerting rules via Burn Rates

@HeinrichHartmann | Statistics for Engineers | SRECon EMEA 2022

Sampling

Costs Logs/Metrics/Traces

Report "around" 10 **100 values** 10% sampling estimate 10x "around" 100 values Values

@HeinrichHartmann | Statistics for Engineers | SRECon EMEA 2023

Sampling

Sampling - Simulation (10K iterations)

Sampling - Request Rates

Sampling - Request Rates

Sampling - Request Rates

Bernoulli Sampling Theory

Proposition

- X is a random variable following a scaled binomial distribution
- The expected value of X is N

- The standard deviation of X is
$$std(X) = \sqrt{\frac{1-p}{N \cdot p}}$$

Sampling - Simulation - Percentiles p90

Sampling - Simulation - Percentiles p95

Sampling - Simulation - Percentiles

The Sampling Error Calculator

heinrichhartmann.com/sampling

# Sampling				
Sampling Rate	10 %	-0		
# Request Rates				
Request Rate	100 rpm ~	-0		
Time window	1 min v (60 sec)			
Population	Total 100 requests contained in 60 sec time-window.			
## Samping Effects on Request Rate Estimates 1000 iterations				
Sample	We expect to retrain 10 requests, after sampling with 10% probability.			
	Value	Standard Error	Realtive Error	
Estimate Req. Count	100.0 req	± 30.00 req	30.00%	
Simulate Req. Count	98.3 req	± 30.31 req	30.82%	
Estimate Req. Rate	1.7 rps	± 0.50 rps	30.00%	
Simulate Req. Rate	1.6 rps	± 0.51 rps	30.82%	

# Error Rates					
Error Rate	5 %	••			
Population	From the 100 requests 5 are marked as error.				
## Samping Effects on Error Rate Estimates 1000 iterations					
Sample	We expect to retrain 0.5 errors in the sample of size 10.				
	The probability that no error will be retained is 59.049000000%				
Estimate Err. Rate	5.0 %	± 7.02 ppt	140.36%		
Simulate Err. Rate	4.9 %	± 7.33 ppt	150.90%		

# Latency					
Latency Distribution	LogNormal V				
Percentile p 95.0	3.4 ms				
Population	Total 100 requests following LogNormal distribution.				
	The true p95.0 is at 3.4ms.				
## Samping Effects on Latency			1000 iterations		
Sample	We expect to retain	10.0 requests.			
Estimate Percentile p95.0	2.78 ms	± 1.68 ms	60.45%		
60 Percentile 55- - 50- - 45- - 40- - 35- - 30- - 25- - 25- - - - 05- - 00- 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0					

Sampling - Take Aways

- Effective way to trade costs vs. accuracy
- Accuracy loss depends on sample size and other factors
- Simulation gives effective tool to study sampling impact

Thank You!

Further Reading

- twitter: <u>@HenrichHartmann</u>
- blog: <u>heinrichhartmann.com</u>

- source: <u>github.com/HeinrichHartmann/Statistics-for-Engineers</u>

