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ABSTRACT

In this text we are going to visit basic concepts of linear algebra from the view of an algebraic
geometer. Vectors are treated as functions on finite sets which are naturally elements in algebras and
modules. We develop a simple formalism of push-forward and pull-back with projection formulas
and base-change, duality theorems and adjunctions.
By starting with the infinite case first, we are lead to clear conceptual distinctions between pull-back
and push-forward, that are easily overlooked in the finite case.
Matrix calculus is introduced as “kernel-convolutions” on product spaces. Formulas for pull-back
and push-forward are derived in terms of matrix product with row/column vectors.
Finally we introduce a syntactic convenience of “covariant composition” that allows us to arrive
at perfectly natural formulas for row-vector and push-forward composition, that avoid any mental
gymnastics of transposing indices, functions or arguments.

1 Sums and Products

Definition 1.1. Let k be a field and I be a set (possibly infinite). We consider two naturally associated k-vector spaces
Sk(I) and Pk(I) defined as follows:

Pk(I) =
∏
i∈I

k = Map(I, k) = {a : I → k}

Sk(I) =
⊕
i∈I

k = Mapf (I, k) = { a : I → k | a(i) = 0 almost everywhere }

Here “almost everywhere” means that there is a finite set J ⊂ I where the property does not hold. In this case Sk(I)
contains functions I → k, that are zero outside of a finite set.
Proposition 1.2 (Basis). For i ∈ I we have linear maps between these k-vector spaces:

ei : Sk(I) ⊂ Pk(I)→ k, a 7→ a(i) ei : k → Sk(I) ⊂ Pk(I), 1 7→ (j 7→ δi(j))

The elements ei := ei(1) are a basis of Sk(I) as k-vector space.

The composition ei ◦ ei is an idempotent endomorphism of Sk/Pk. The composition ei ◦ ei is the identity on k. All
other compositions are zero.
Proposition 1.3 (Naturality). Let f : I → J be a map between sets. f induces maps between k-vectors spaces:

f∗ : Sk(I) −→ Sk(J), a 7→ (j 7→
∑

i:f(i)=j
a(i)) and f∗ : Pk(J) −→ Pk(I), b 7→ b ◦ f

For the coordinate maps ei, ei this translates into

f∗ ◦ ei = ef(i), and ei ◦ f∗ = ef(i).

If g : J → K is another map, we have:

(g ◦ f)∗ = f∗ ◦ g∗ : Pk(K)→ Pk(I) and (g ◦ f)∗ = g∗ ◦ f∗ : Sk(I)→ Sk(K).

Proof. For c ∈ Pk(I), we have (g ◦ f)∗(c) = c ◦ g ◦ f = f∗(g∗(c)). For i ∈ I , we have (g ◦ f)∗(ei) = eg(f(i)) =
g∗(f∗(ei)), hence both maps agree on a basis of S(I)k.
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Example 1.4. Let I → {∗} be the projection to a point. Then f∗ : Sk(I) → k, a 7→
∑
i ai, is called the trace map.

The element 1 = f∗(1) ∈ Pk(I) is called unit.

Example 1.5 (Bijections). Let σ : I → J be a bijection, then σ∗ei = eσ(i) and σ∗ei = eσ−1(i). Moreover,
eiσ∗ = eσ

−1(i) and eiσ∗ = eσ(i).

Proposition 1.6 (Adjunction). Let (_)# : k − V ect→ Set be the forgetful functor, that maps a k-vector space to it’s
underlying set. Then there is a natural isomorphism:

Homk(Sk(I), V ) ∼= Map(I, V #)

In other words Sk is a right-adjoint to (_)#. The units/co-units are given by:

ε : Sk(V #) −→ V, ev 7→ v and η : I −→ Sk(I)#, i 7→ ei.

Proposition 1.7 (Duality). The k-bilinear pairing

(_, _) : Pk(I)× Sk(I) −→ k, a, b 7→ (a, b) := tr(a · b) =
∑
i

a(i)b(i)

is non-degenerate and induces an isomorphism Pk(I)→ Sk(I)∗ := Homk(Sk(I), k). The dual space of Pk(I) is not
isomorphic to Sk(I), if I is infinite.

Proposition 1.8 (Linear Adjunction). If f : I → J is a map, then f∗, f∗ are adjoint to each other for the trace pairing:

(f∗a, b) = (a, f∗b) for a ∈ Pk(J), b ∈ Sk(I).

Proposition 1.9 (Projection Formula). For f : I → J , the projection formula holds:

f∗(f
∗(a) · b) = a · f∗(b) for a ∈ Pk(J), a ∈ Sk(I).

Proof. We have f∗(f∗(a) · b)(j) =
∑
i:f(i)=j(a(f(i))b(i)) = a(j)

∑
i:f(i)=j(b(i)) = a · f∗(b).

Proposition 1.10 (Sums). Let I = I1 ·∪I2 a partition of I . Denote the inclusions by ιi : Ii → I . Then

ι∗1 ⊕ ι∗2 : P (I) −→ P (I1)⊕ P (I2) ι1∗ ⊕ ι2∗ : S(I1)⊕ S(I2) −→ S(I)

is an isomorphism.

Proposition 1.11 (Finite maps). A map f : I → J is called, finite if the fibers f−1{j} are finite for all j. In this case
we have the following identities:

ej ◦ f∗ =
∑

i:f(i)=j
ei, and f∗ ◦ ej =

∑
i:f(i)=j

ei.

We can extend the definition of f∗ from S(I)to P (I) in the finite case

f•(a) : P (I)→ P (J), a 7→ (j 7→
∑

i:f(i)=j
a(j)),

so f•(a) = f∗(a) for a ∈ S(I).

Similarly, for f∗ we have f∗(S(J)) ⊂ S(I), so that we get an induced map S(J)→ S(I), that we denote by the same
symbol f∗.

The projection formula extends to the finite case as

f•(f
∗(a) · b) = a · f•(b), for a ∈ P (J), b ∈ P (I).

Example 1.12. For an inclusion ι : J ⊂ I , we have ι•(1) = 1J , where 1J(i) = 1 if i ∈ J , and 0 otherwise.

Example 1.13. Let f : I → J be a finite map, then f•f∗(b) = f•(1) · b by projection formula. Here f•(1)(j) =
#f−1{j} counts the cardinality of the fibers.

The other composition can be computed as f∗f•(a)(i) =
∑
i′:f(i′)=f(i) a(i′).
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2 Commutative Algebra

Proposition 2.1. The k-vector space P (I) is a k-algebra with point wise multiplication (a · b)(i) = a(i) · b(i)) and
unit element 1. The k-vector space S(I) is an P (I)-sub-module of P (I).
Proposition 2.2. If f : I → J is a map, then f∗ is a morphism of k-algebras, and f∗ is a morphism of P (J)-modules,
if we regard S(I) as a P (J) module via f∗.
Proposition 2.3. The idempotent element in P (I) are exactly the functions { ei | i ∈ I }.
Proposition 2.4. The k-algebra morphisms P (I)→ K are exactly the function

{
ei | i ∈ I

}
.

Proposition 2.5. If A : P (J)→ P (I) is a morphism of k-algebras, i.e. A(x · y) = A(x) ·A(y), A(1) = 1, then there
is a unique f : I → J , with A = f∗.
Proposition 2.6. The datum of a P (I)-module M , is equivalent to giving a vectors space V with a direct sum
decomposition V =

⊕
i∈I Vi.

Proposition 2.7 (Products). If K = I1 ×J I2 is a fiber product with structure maps πi : K → Ii, σi : Ii → J , i.e.
K = { (i1, ij) | σ1(i1) = σ2(i2) } ⊂ I1 × I2, then the bilinear map

φ : P (I1)× P (I2) −→ P (K) a, b 7→ π∗1(a) · π∗2(b) (1)

induces an morphism P (I1)⊗P (J) P (I2)→ P (K) of k-algebras. In case I1, I2 are finite, φ is an isomorphism.

Proof. Let a ∈ P (I), b ∈ P (J), c ∈ P (K), then

φ(c · a, b) = π∗1(σ∗1(c) · a) · π∗2(b) = (π1 ◦ σ1)∗(c)π∗1(a)π∗2(b) = (π2 ◦ σ2)∗(c)π∗1(a)π∗2(b) = φ(a, c · b).

So we see that the map (1) is indeed P (J)-linear, and induces a linear map P (I1)⊗P (J) P (I2)→ P (K).

Now assume that I1, I2 are finite. In this case we can set ψ(a) =
∑

(i,j)∈K a(i, j)ei ⊗ ej .

φ(ψ(c)) =
∑

(i,j)∈K

c(i, j)π∗1(ei) · π∗2(ei) =
∑

(i,j)∈K

c(i, j)e(i,j) = c

and

ψ(φ(a, b)) =
∑

(i,j)∈K

(π∗1(a) · π∗2(b))(i, j)ei ⊗ ej =
∑

(i,j)∈K

a(i)b(j)ei ⊗ ej =
∑

i∈I1,j∈I2

a(i)b(j)ei ⊗ ej = a⊗ b

Where we have used, that ei ⊗ ej = 0 if (i, j) /∈ K, i.e. σ1(i) 6= σ2(j).

Example 2.8. If I = N, then φ : P (I)⊗k P (I)→ P (I × I) is not surjective.

Proof. Consider ∆ ∈ P (I × I),∆(i, j) = δi,j , and assume ∆ = φ(
∑n
ν=1 aν ⊗ bν). We get have ei ⊗ ej · ∆ =∑n

ν=1 aν(i)bν(j) · ei ⊗ ej = δi,j . Hence
∑n
ν=1 aν(i)bν(j) = δi,j for all i, j ∈ N. Now consider the map α : kn →

P (I), defined by α(x) = (i 7→
∑
ν xνaν(i)). Then α(b(i)) = ei ∈ P (I) for all i ∈ N. So Im(α) contains S(I),

which is impossible since S(I) is infinite dimensional and dom(α) = kn is not.

Proposition 2.9 (Finite base change). If K = I1×J I2 is a fiber product with structure maps πi : K → Ii, σi : Ii → J .

K
π1−−−−→ I1yπ2

yσ1

I2
σ2−−−−→ J

If σ1 : I1 → J is finite, then the same holds for π2 : K → I2, and in this case

π1∗π
∗
2 = σ∗1σ2∗ : S(I2) −→ S(I1), as well as π2•π

∗
1 = σ∗2σ1• : P (I1) −→ P (I2).

Proof. If σ2 is finite, then i ∈ I2 we have π−12 {i} = {(i1, i)|σ1(i1) = σ2(i)} ∼ σ−11 {j}, with j = σ2(i). Hence π2 is
finite as well.

For a ∈ P (I1) we have π2•π∗1(a)(i2) =
∑
i1:(i1,i2)∈K a(i1), and σ∗2σ1•(a)(i2) =

∑
i1:σ1(i1)=σ2(i2)

a(i1). But the
sum conditions are equivalent by the definition of K. The proof for the second identity is near identical.
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3 Finite Sets

Definition 3.1. Let I be a finite set, then we have

k[I] := Sk(I) = Pk(I).

This is a k-vector space with basis ei ∈ k[I] and dual basis ei : k[I]→ k. It’s a k-algebra with point-wise multiplication
and unit 1. It comes with the non-degenerate trace-paring (_, _) and a trace-map tr : k[I]→ k, a 7→

∑
i a(i).

For each map f : I → J , between finite sets I, J we get two adjoint morphisms

f∗ : k[J ]→ k[I], b 7→ b ◦ f f∗ : k[I]→ k[J ], ei 7→ ef(i).

Definition 3.2 (Products). For finite sets I1, . . . ,×Ik, we set

k[I1, . . . , Ik] := k[I1 × · · · × Ik].

For natural numbers n1, . . . , nk, we set

k[n1, . . . , nk] := k[[n1], . . . , [nk]]

where [n] = {1, . . . , n}.
Example 3.3. The sets k[n1, . . . , nk] are abundant in computational mathematics.

1. Elements in k[n] are often called vectors.

2. Elements in k[n1, n2] are often called matrices.

3. Elements in k[n1, . . . , nk] are sometimes called tensors.

4 Matrix Calculus

Definition 4.1 (Matrices). Consider the product I × J with projections π1, π2. An element A ∈ k[I, J ] induces two
k-linear morphisms:

A∗ : k[I] −→ k[J ], a 7→ π2∗(π
∗
1(a) ·A), so (A∗a)(j) =

∑
i∈I

a(i)A(i, j)

A∗ : k[J ] −→ k[I], b 7→ π1∗(A · π∗2(b)), so (A∗b)(i) =
∑

j∈J
A(i, j)b(j).

For the basis vectors we have:

A∗ei =
∑

j∈J
A(i, j)ej , A∗ej =

∑
i∈I

A(i, j)ei,

in other words

A∗ =
∑

i,j
A(i, j)ej ◦ ei, A∗ =

∑
i,j
A(i, j)ei ◦ ej .

Definition 4.2 (Matrix composition). If A ∈ k[I, J ], B ∈ k[J,K] are two matrices. We define their product as

A ∗B := π13∗(π
∗
12A · π∗23B), so (A ∗B)(i, k) =

∑
j∈J

A(i, j)B(j, k)

where π12 : I × J ×K → I × J, . . . are the projections to the factors.
Proposition 4.3 (Associativity). For three matrices A ∈ k[I, J ], B ∈ k[J,K], C ∈ k[K,L] we have

(A ∗B) ∗ C = A ∗ (B ∗ C).

Proposition 4.4. For matrices A ∈ k[I, J ], B ∈ k[J,K] the following identities holds:

(A ∗B)∗ = B∗ ◦A∗ : k[I] −→ k[K] (A ∗B)∗ = A∗ ◦B∗ : k[K] −→ k[I].

Proposition 4.5. (Matrix Adjunction) The morphisms A∗, A∗ are adjoint for the trace-pairing:

(A∗a, b) = (a,A∗b) for all a ∈ k[I], b ∈ k[J ]

Proof. Indeed (A∗a, b) =
∑
i,j a(i)A(i, j)b(j) = (a,A∗b).
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Proposition 4.6. (Matrix representations) Let α : k[J ]→ k[I] be a k-linear map, then there exists a uniqueA ∈ k[I, J ]
so that A∗ = α.

Proof. Set A(i, j) = eiα(ej) then A∗ej =
∑
i eiA(i, j) =

∑
i eie

iα(ej) = α(ej).

Corollary 4.7. Every linear map α : k[I]→ k[J ] has an adjoint.
Definition 4.8. (Rows and Columns) Consider the following trivial bijections:

row : I → {∗} × I, i 7→ (∗, i), col : I → I × {∗}, i 7→ (i, ∗).

The induced maps row∗, col∗ map an element a ∈ k[I], to a matrix with a single row or column, respectively.

For sets I, J we have the transposition operator

t : I × J → J × I, (i, j) 7→ (j, i).

Clearly t ◦ row = col and t ◦ col = row.
Proposition 4.9. For a ∈ k[I], A ∈ k[I, J ], we have:

row∗(A∗a) = row∗(a) ∗A ∈ k[∗, I], col∗(A
∗b) = A ∗ col∗(b) ∈ k[I, ∗].

Proof. We have (row∗(a) ∗A)(∗, j) =
∑
i a(i)A(i, j) = A∗(a)(j) = row(A∗a)(∗, j).

Definition 4.10. (Covariant Composition) The composition formulas get more consistent when we introduce the
covariant composition operator. For general maps f : X → Y, g : Y → Z, and x ∈ X we define

f • g := g ◦ f = (x 7→ g(f(x))) and x • f := f(x).

The covariant composition is clearly associative. It has the advantage, that the composition order is consistent with the
direction of the arrows. While this operator might be regarded as trivial, or point-less, it greatly reduces the mental
gymnastics required when translating diagrams to formulas, and thus adds considerable convenience.

For a ∈ k[I], A ∈ k[I, J ], B ∈ k[J,K], we find:

A∗ =
∑
i,j

A(i, j)ei • ej , (A ∗B)∗ = A∗ •B∗

(a •A∗)(j) =
∑
i

a(i)A(i, j), row(a •A∗) = row(a) ∗A

Moreover

ei •A∗ =
∑
j

A(i, j)ej

Remark 4.11. Following common conventions we identify a ∈ k[I] with row(a) ∈ k[∗, I], and denote col(a) by
t(a) = at. With this notation and A ∈ k[I, J ], B ∈ k[J,K], c ∈ k[K] we have

A∗ ◦B∗ ◦ c = A ∗B ∗ ct and a •A∗ •B∗ = a ∗A ∗B.

So matrix pullback A∗ and column vectors are “natural” for when using the usual (contravariant) composition operation
“◦”. For the covariant composition “•” row vectors and push-forward are more natural, as illustrated by the above
formula.
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