
OSMC, Nürnberg, 2016-11-30

Friends and Foes in Monitoring APIs

Heinrich Hartmann, Circonus

@HeinrichHartman

Hi, I am Heinrich

· From Mainz, now in Munich

· PhD in Mathematics (Bonn)

· Independent IT Consultant

· Analytics Lead at Circonus,

Monitoring and Analytics Platform

heinrich.hartmann@circonus.com

@HeinrichHartman(n)

https://twitter.com/heinrichhartman
https://twitter.com/heinrichhartman

@HeinrichHartman

Circonus in a Nutshell

· Monitoring and Analytics Platform

· SaaS and on-Premise Versions

· Founded in 2010 by Theo Schlossnagle (OmniTI)

· Build by Engineers for Engineers

OmniOS (zfs/zones) / Inhose-DB / Inhouse-Q / ...

· Highly scalable and cost efficient

· Advanced Analytics (Histograms, Forecasting, AD, OD, CAQL)

· Trusted by: Groupon, Cisco/WebEx, Joyent, Hashicorp, ...

@HeinrichHartman

Open Source Contributions

· NAD https://github.com/circonus-labs/nad

Lightweight, 0-conf, extensible agent that collects *correct* data, supports reverse-pull.

· Reconnoiter https://github.com/circonus-labs/reconnoiter

Large scale metric collection service (“broker”)

· fq https://github.com/circonus-labs/fq - fast relieable pub-sub messaging

· libmtev https://github.com/circonus-labs/libmtev - Event-driven application framework

· libcirclhist https://github.com/circonus-labs/libcircllhist - Circonus’ Histograms

· Instrumentation packages, ...

https://github.com/circonus-labs

https://github.com/circonus-labs/nad
https://github.com/circonus-labs/reconnoiter
https://github.com/circonus-labs/fq
https://github.com/circonus-labs/libmtev
https://github.com/circonus-labs/libcircllhist
https://github.com/circonus-labs
https://github.com/circonus-labs

BETA

BETA

BETA

@HeinrichHartman

I have been talking about #StatsForEngineers

[1] Statistics for Engineers @ ACM Queue and @ CACM

[2] Statistics for Engineers Workshop Material @ GitHub

[3] Spike Erosion @ circonus.com

[5] T. Schlossnagle - Percentages are not People @ circonus.com

[4] T. Schlossnagle - The Problem with Math @ circonus.com

Talks

[5] Workshop “Statistics for Engineers” @ SREcon16 | USENIX in Dublin

[6] Monitorama PXD 2016

[7] Netways/OSMC Nürnberg 2016 (upcoming)

http://queue.acm.org/detail.cfm?id=2903468
http://cacm.acm.org/magazines/2016/7/204029-statistics-for-engineers/abstract
https://github.com/HeinrichHartmann/Statistics-for-Engineers
http://www.circonus.com/spike-erosion/
http://www.circonus.com/percentages-arent-people/
http://www.circonus.com/problem-math/
https://www.usenix.org/conference/srecon16
http://monitorama
https://www.netways.de/osmc/

@HeinrichHartman

A tale of API Monitoring

@HeinrichHartman

Use Case: “Xalando” - a fashion webstore

· A (fictional) webstore for fashion products

· Web API serving their catalog

· Loses money if requests take too long

Monitoring Goals

1. Measure user experience / quality of service

2. Determine (financial) implications of service degradation

3. Define sensible SLA-targets for the Dev- and Ops-teams

@HeinrichHartman

{1} External Monitoring

@HeinrichHartman

{1} External API Monitoring

Method

1. Make a synthetic request every minute
2. Measure and store request latency

Good for

· Measure Availability
· Alert on outages

Bad for

· Measuring user experience

Latencies of synthetic requests over time

@HeinrichHartman

<!> Spike Erosion </!>

· On long time ranges, aggregated / rolled-up data is commonly displayed

· This practice “erodes” latency spikes heavily!

· Store all data and use alternative aggregation methods (min/max) to get full picture, cf. [3].

1d max

all samples as
Heatmap / ‘dirt’

@HeinrichHartman

{2} Log Analysis

@HeinrichHartman

Method

Write to log file:

- time of completion,

- request latency,

and further metadata.

Discussion

· Rich information source for all kinds of analysis

· Easy instrumentation (printf)

· Slow. Long delay (minutes) before data is indexed and becomes accessible for analysis

· Expensive. Not feasibile for high volume APIs

{2} Log Analysis

Internal view of an API - “UML” version.

@HeinrichHartman

Numerical Digest: The Request-Latency Chart
a concise visualization of the API usage

Latency on the
y-axis

time the request was completed

@HeinrichHartman

Construction of the Request-Latency Chart (RLC)

Request Latency UML Diagram Request Latency Chart

@HeinrichHartman

Math view on APIs

(A) Latency

distribution

(B) Arrival/Completion times

(C) Queuing theory

@HeinrichHartman

“Requests are People”

If you care about your users, you care about their requests.

Every single one.

@HeinrichHartman

{3} Monitoring Latency Averages

@HeinrichHartman

{3} What are latency mean values?

reporting period

@HeinrichHartman

{3} Mean Request Latency Monitoring

Method

1. Select a reporting period (e.g. 1 min)

2. For each period report the mean latency

Pro/Con
+ Measure requests by actual people

+ Cheap to collect store and analyze

- Easily skewed by outliers at the high end

 (complex, long running requests)

- ... and the low end (cached responses)

“Measuring the average latency is like measuring the average temperature in a hospital.”
 -- Dogan @ Optimizely

@HeinrichHartman

{3} Mean Request Latency in practice

@HeinrichHartman

{3} Mean Request Latency - Robust Variants

1. Median Latency

- Sort latency values in reporting period

- The median is the ‘central’ value.

2. Truncated Means

- Take out min and max latencies in reporting

 period (k-times).

- Then compute the mean value

3. Collect Deviation Measures

- Avoid standdard deviations, use

- Use Mean absolute deviation Construction of the median latency

@HeinrichHartman

{4} Percentile Monitoring

@HeinrichHartman

{4} What are Percentiles?

@HeinrichHartman

{4} Percentile Monitoring

Method

1. Select a reporting period (e.g. 1 min)

2. For each reporting period measure the 50%, 90%, 99%, 99.9% latency percentile

3. Alert when percentiles are over a threshold value

Pro/Con
+ Measure requests by actual people

+ Cheap to collect store and analyze

+ Robust to Outliers

- Up-front choice of percentiles needed

- Can not be aggregated

{5} How it looks in practice

Latency percentiles 50,90,99 computed over 1m reporting periods

<!> Percentiles can’t be aggregated </!>

The median of two medians is NOT the total median.

If you store percentiles you need to:

A. Keep all your data. Never take average rollups!

B. Store percentiles for all aggregation levels separately, e.g.

○ per Node / Rack / DC

○ per Endpoint / Service

C. Store percentiles for all reporting periods you are interested in, e.g. per min / h / day

D. Store all percentiles you will ever be interested in, e.g. 50, 75, 90, 99, 99.9

Further Reading: [4] T. Schlossnagle - The Problem with Math @ circonus.com

http://www.circonus.com/problem-math/

An Argument with John Rauser@Snapchat

http://rpubs.com/jrauser/percentiles

...

http://rpubs.com/jrauser/percentiles
http://rpubs.com/jrauser/percentiles

{5} Desireable Properties for Metrics

A statistic S robust if S(A) if a small number of (severe)
outliers induces a small change in S(A).

A statistic S is mergable if S(A ∪ B) can be computed
from S(A) and S(B).

{5} It looks like you can only have one:

Type Statistic Robust Mergable

Centrality mean X

median X

Deviation stddev X

IQR X

Distribution Percentiles X

@HeinrichHartman

{5} API Monitoring with Histograms

{5} API Monitoring with Histograms

Method

1. Divide latency scale into bands

2. Divide the time scale into reporting periods

3. Count the number of samples in each

latency band x reporting period

Discussion

· Summary of full RLC, with reduced precision

· Extreme compression compared to logs

· Percentiles, averages, medians, etc. can be derived

· Aggregation across time and nodes trivial

· Allows more meaningful metrics

 l
at

en
cy

sample count

time

@HeinrichHartman

Histograms as Ultimate Summary Statistic

· Histograms are robust.

· Histograms are mergable.

· Histograms are an univesersal mergable enhancement

{5} Histogram Monitoring in Practice
Histograms can be visualized as heatmaps.

Aggregate data from all nodes
serving “web-api”

.. across windows of 10min.

{5} Histogram Monitoring in Practice
All kinds of metrics can be derived from histograms

@HeinrichHartman

{6} The search for meaningful metrics

{6} Users offended per minute

{6} Total users offended so far

@HeinrichHartman

Takeaways

· Don’t trust line graphs (at least on large scale)

· Don’t aggregate percentiles. Aggregate histograms.

· Keep your data

· Strive for meaningful metrics

@HeinrichHartman

BACKUP

