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Hi, | am Heinrich

heinrich.hartmann@circonus.com

@HeinrichHartman(n)

@HeinrichHartman

From Mainz, now in Munich
PhD in Mathematics (Bonn)
Independent IT Consultant
Analytics Lead at Circonus,

Monitoring and Analytics Platform
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https://twitter.com/heinrichhartman
https://twitter.com/heinrichhartman

Circonus in a Nutshell

Monitoring and Analytics Platform

Saa$S and on-Premise Versions
Founded in 2010 by Theo Schlossnagle (OmniT])
Build by Engineers for Engineers

OmniOS (zfs/zones) / Inhose-DB / Inhouse-Q / ...

Highly scalable and cost efficient

Advanced Analytics (Histograms, Forecasting, AD, OD, CAQL)
Trusted by: Groupon, Cisco/WebEXx, Joyent, Hashicorp, ...
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Open Source Contributions

https://gqithub.com/circonus-labs

NAD https://github.com/circonus-labs/nad

Lightweight, O-conf, extensible agent that collects *correct® data, supports reverse-pull.

Reconnoiter https://github.com/circonus-labs/reconnoiter

Large scale metric collection service (“broker”)

fq https://github.com/circonus-labs/fq - fast relieable pub-sub messaging
libmtev https://github.com/circonus-labs/libmtev - Event-driven application framework

libcirclhist https://github.com/circonus-labs/libcircllhist - Circonus’ Histograms

Instrumentation packages, ...
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i iRoNe:

db.io

For a Durable, Scalable Graphite Infrastructure

A scalable time-series backend for graphite

Add db:

NO more shutting off and deleting metrics
NO more setting up cold standbys
NO learning curve

>> Add IRONdb for a Fault Tolerant experience <<

irondb.io



M 1RoNe:
25,000 metrics
FREE
db.io 100,000 metrics
For a Durable, Scalable $10k

Graphite Infrastructure 100,000,000 metrics
$IMM

irondb.io




| have been talking about #StatsForEngineers

NININININI S [1] Statistics for Engineers @ ACM Queue and @ CACM

a Em q u E U E [2] Statistics for Engineers Workshop Material @ GitHub

[3] Spike Erosion @ circonus.com

Use-Case
[5] T. Schlossnagle - Percentages are not People @ circonus.com

STATISTIBS THEHUG B [4] T. Schlossnagle - The Problem with Math @ circonus.com

FOR A0 e
A alKs
ENGINEERS 1 ...

E I : [5] Workshop “Statistics for Engineers” @ SREcon16 | USENIX in Dublin

[6] Monitorama PXD 2016

[7] Netways/OSMC Nirnberg 2016 (upcoming)

Complete table of contents on the following two pages
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http://queue.acm.org/detail.cfm?id=2903468
http://cacm.acm.org/magazines/2016/7/204029-statistics-for-engineers/abstract
https://github.com/HeinrichHartmann/Statistics-for-Engineers
http://www.circonus.com/spike-erosion/
http://www.circonus.com/percentages-arent-people/
http://www.circonus.com/problem-math/
https://www.usenix.org/conference/srecon16
http://monitorama
https://www.netways.de/osmc/

A tale of APl Monitoring

0
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Use Case: “Xalando” - a fashion webstore

A (fictional) webstore for fashion products
Web API serving their catalog

Loses money if requests take too long
Monitoring Goals

1. Moeasure user experience / quality of service
2. Determine (financial) implications of service degradation

3. Define sensible SLA-targets for the Dev- and Ops-teams

@HeinrichHartman
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{1} External Monitoring
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{1} External APl Monitoring

Method

1. Make asynthetic request every minute
2. Measure and store request latency

Good for

Measure Availability
Alert on outages

Bad for

Measuring user experience

@HeinrichHartman

Original Graph
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Latencies of synthetic requests over time
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<!> Spike Erosion </!>
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On long time ranges, aggregated / rolled-up data is commonly displayed Heatmap / dirt
This practice “erodes” latency spikes heavily!

Store all data and use alternative aggregation methods (min/max) to get full picture, cf. [3].

@HeinrichHartman
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{2} Log Analysis
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{2} Log Analysis

Method
Write to log file: | :
[ [ ,\\
- time of completion, V| :{ : ,Rﬂqm{s
- request latency, 5 e
and further metadata. >{, ;
I

Discussion Internal view of an API - “UML” version.

Rich information source for all kinds of analysis

Easy instrumentation (printf)

Slow. Long delay (minutes) before data is indexed and becomes accessible for analysis
Expensive. Not feasibile for high volume APls
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Numerical Digest: The Request-Latency Chart

a concise visualization of the APl usage

Latency on the Tegoor by
y-axis
Y (owrl-ll‘(r-s
it

time the request was completed
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Construction of the Request-Latency Chart (RLC)
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Request Latency UML Diagram Request Latency Chart
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Math view on APlIs
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(A) Latency
distribution (C) Queuing theory
Fegook
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(B) Arrival/Completion times
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“Requests are People”
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If you care about your users, you care about their requests.

Every single one.
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{3} Monitoring Latency Averages
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{3} What are latency mean values?

@HeinrichHartman
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{3} Mean Request Latency Monitoring

Method

1. Select areporting period (e.g. 1 min)
2. Foreach period report the mean latency

Pro/Con

+ Measure requests by actual people

+ Cheap to collect store and analyze

- Easily skewed by outliers at the high end
(complex, long running requests)

- ...and the low end (cached responses)

Xy,

‘ Liae

“Measuring the average latency is like measuring the average temperature in a hospital.”

@HeinrichHartman

-- Dogan @ Optimizely
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{3} Mean Request Latency in practice

Original Graph E =
60
\ } | , ) ‘ | ‘ ‘ | W‘\
I I [
21:00 22:00 23!00 0:00 1:00 2!00
metric:histogram(<...>,"web-api") | histogram:mean() 0
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{3} Mean Request Latency - Robust Variants

1. Median Latency
- Sort latency values in reporting period
- The medianis the ‘central’ value.

2. Truncated Means
- Take out min and max latencies in reporting
period (k-times).
- Then compute the mean value T ¢

3. Collect Deviation Measures I [ 1
- Avoid standdard deviations, use
- Use Mean absolute deviation Construction of the median latency

f F
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{4} Percentile Monitoring
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{4} What are Percentiles?
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{4} Percentile Monitoring

Method

1. Select areporting period (e.g. 1 min)
2. Foreachreporting period measure the 50%, 90%, 99%, 99.9% latency percentile
3. Alert when percentiles are over a threshold value

Pro/Con

+ Measure requests by actual people

+ Cheap to collect store and analyze

+ Robust to Outliers

- Up-front choice of percentiles needed
- Can not be aggregated

(], ™
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{5} How it looks in practice

i MR Jmm UM

Latency percentiles 50,90,99 computed over 1m reporting periods
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<!> Percentiles can’t be aggregated </!>

The median of two medians is NOT the total median.

If you store percentiles you need to:
A. Keep all your data. Never take average rollups!
B. Store percentiles for all aggregation levels separately, e.g.
o per Node /Rack/DC
o per Endpoint/ Service
C. Store percentiles for all reporting periods you are interested in, e.g. per min / h / day
D. Store all percentiles you will ever be interested in, e.g. 50, 75, 90, 99, 99.9

Further Reading: [4] T. Schlossnagle - The Problem with Math @ circonus.com ‘; CIRCONUS


http://www.circonus.com/problem-math/

An Argument with John Rauser@Snapchat

jrauser

1/'1 get annoyed when people say flatly that you
can't meaningfully aggregate sample percentiles.

Damned Slime-Man @danslimmon
i_ Percentilesi_ cannoti_ bei aggregatedi - @nheinrichhartman #monitorama

RETWEETS LIKES 5y
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Dear John,
Thank you very much for your comments. | appreciate your passion for this topic. Percentiles are a delicate and
subtle topic. It's great to have this conversation. | was not able to put my remarks into tweets, so | am using this
old fashioned "letter"” form to reply.
So, | said:

“Percentiles can't be aggregated!”

This quote is a compressed version of the following statement:

Mean values of percentiles are not percentiles of a larger population. Furthermore, there is no
aggregation method that gives you total percentiles from percentiles of subsets of your data.

This addresses a mis-perception that is paramount in the monitoring community. Take for example this graph |
just found on Google (source):

Lo

Lozl

| am pretty sure, that this is not the the 95%:-tile of the ~2h represented by each point. It's instead the average
of all 95%-tiles measured over 5M intervals. This is something different. And you should be aware of that. Most
people are not. This is my point!

‘Can we fix it, by using another aggregation method? No way. Sorry.
‘Can some information be derived from averaged percentiles? Well, yes. But it’s _super_subtle.

‘Canwe do better? Yes certainly! Store and aggregate Histograms. At Circonus we spent so much time and
resources to make this work for our users. WE CARE ABOUT GETTING THIS RIGHT! It's super frustrating to
see people being mislead by their tools and not even noticing it. And by the way, Google's John Banning, who
presented Google's ‘Global Monitoring System’ directly after me referenced my presentation multiple times for
this point. At Google they do care as well, and use histograms!

So, Is the initial quote bold and compressed. Well yes, of course! | am on a stage in front of 300 people that
want to be entertained ;)

| just found a wonderful article about the art of presentation (https:/thefractionatingcolumn.com) that makes

some great points: Story, Content, Passion, Humor. | fully agree with these points, and | consciously made the
decision to sacrifice some precision to "make it sticky”

Sincerely,
Heinrich Hartmann, Portland, 2016-06-30|
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You CAN average percentiles!

John Rauser
July 2016
.. at least some of the time.

“You can’t meaningfully average percentiles.”

From time to time | hear people say “You can't meaningfully average percentiles.” This has always irritated me.
Last week | said as much on twitter.

This document is an attempt to explain my position. It is also an attempt to teach statistical thinking by example,
and to demonstrate using the R language for data analysis. This document was written in RMarkdown, and you
can download the source here and play with it yourself.

If the authors linked above had said “In an operational context, averaging percentiles is a bad idea,” or more
simply, “Averaging percenties is very dangerous,” | would have no quarrel, but by making such extreme
statements they shut down opportunities for statistical thinking, and as someone who cares a great deal about
statistical education, that makes me sad.

The average is just a statistical tool. Like any tool it can be used wisely or foolishly. You can average any data you
like, and the average is always “meaningful” in that it has well understood mathematical properties. Whether or
not an average is useful depends on how your data was generated and what claims you're making about that
average.

What is the analytical task at hand?

What the average of percentiles is not is a percentile. It is certainly true that there is no way to recover the exact
population percentile from a collection of sample percentiles. When the authors linked above say that the median
of the sample medians s not the population median, they are completely correct.

But when trying to summarize a data set, the question you should always be asking yourself is what is the.
analytical task at hand?

The authors above come from the world of operating large fleets of computers (1 world | spent many years in), so
'l choose examples from that realm. Let's say that you have a set of machines, each of which has computed its
own 90th percentile of service latency over some span of time (an hour, for example), and you want to know the
overall 90th percentile across all the machines. To get the exact 90th percentile, you would need to examine all
the raw latency data from all of the machines. This might be deemed too difficult an engineering feat, or it may
well be that the raw data is just gone, and all you have is the 90th percentiles from each host.

Now the truth is that you never really needed to know the exact 90th percentile. You were always willing to settie
for an estimate with some small amount of error. (1 hope this is true, because in a distributed computing
environment that is all you can ever achieve:) Further, let's say you're willing to assume that each of the machines
in your fleet is functionally the same, and that the observations are distributed across the fleet randomly, with
uniform probability; in technical language, your data is independent and identically distributed (often abbreviated
i.id). In many real fleets, most of the time, this assumption is completely reasonable. Later on we'll examine
what happens when this assumption is violated.

‘The question then is: Is the average of the 90th percentiles a good estimator of the overall 90th percentile?
‘Goodness’ in this context has a technical definition in statistics, but a big concern is bias. It's probably a
STAT301 exercise to prove that in the general case the average of the percentiles is not an unbiased estimator
and is therefore (some might conclude) “bad”. But how bad is it? How does it break down?

We could do calculus and prove theorems, but that's no fun. We can code, let's simulate!

Simulation

We said we were looking at latency data. Latency data is often roughly gamma distributed, so let's pretend that a
gamma process generates our data. Here's one such process, gamma(3, 1/100):

# Generate a dataset with 100 points from [0, 2000]

to_p! £ x=seq(0,2000,length.out=100)) ¥>%

# ... and set y to the density of the gamma distribution at each point
mutate (y=dgamma (x,3,1/100))

# Plot the curve
ggplot(to_plot, aes(x,y)) + geom line() +

# Plot the curve
ggplot(to_plot, aes(x,y)) + geom line() +
xlab("Latency (ms)") + ylab("Density")

0002~

Density

o001~

0000
1000 1500 2000

Latency (ms)

Ina purely ideal world, if your service has to do three sub-tasks in sequence, and each of sub-tasks has

exponentially distributed latency with an average latency of 100ms, this would be the latency distribution of your

service

Let's draw a sample of 1,000 data points from this ideal distribution and plot  histogram with 50ms bins.
# Draw the sample
to_plot<-data.frame(latency=rgamma(1000, 3, 1/100))
# ... and plot a histogram
ggplot (to_plot, aes(latency))+geom histogram(binwidth=50)+xlab("Latency(ms)")

100-

count

6 50 1000 150
Latency(ms)

So our example service has a latency distribution that is skew, with a mean of 300 milliseconds, and a right tail
that stretches out and is sometimes over 1,000 ms. The true 90th percentile of this process is around 532 ms.

qgamma (0.9, 3, 1/100)

http://rpubs.com/jrauser/percentiles

# Draw the replicates
reps<-map_df(1:200, do_one_replication,
simf-simulate_one_day_varying, rate multiplier=1)

# Reshape the data for faceted plotting
to_plot<-reps #>%

select(-idx) >%

gather (kind, value, -true p90)

# Plot faceted histograms

ggplot(to_plot, aes(value-true p90)) + geom_histogram(bins=30)
facet_wrap(-kind, ncol=1) +
xlab("Difference between average and true 90th percentile")

o

unweighted

weighted

count

300 200
Difference between average and true 90th percentile

Now the unweighted average is very far off and even the weighted average is really starting to suffer.

Percentile ranks and histograms

A nice way to sidestep this whole issue is to reason in terms of percentile ranks and not percentiles. If you're
willing to put a line (or lines) in the sand up front and say that certain latency thresholds are important - if you
think (for example) that 1,000ms is a key threshold, then for any subset of requests you can just record the
number of requests and the number over 1,000ms. Those subsets can be trivially combined to compute a
combined percentile rank.

If you're not willing to draw those lines in the sand, and you can afford the storage, you can aiso keep track of
(approximate) histograms which you can combine cheaply to compute (approximate) percentiles across fleets or
over long spans of time.

Conclusion

I hope that I've given you some intuition about how the process of averaging summary statistics like percentiles
works, when it's appropriate, and when it breaks down.

But more, | hope I've shown you how easy it is to simulate statistical processes in order to gain an understanding
of whether and how they work. Anytime a supposed expert (myself included) tells you what you can or can't do
with your data, put on your skeptic’s hat, code up your own simulations on your data, and see for yourself. This
is major part of how | taught myself statistical intuition, and | suspect it will work for you too.
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Don’t aggregate percentiles!

o
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Original Graph

Averaged Percentile

‘ True Percentile

metric:histogram(...) | histogram:window(1h) | histogram:percentile(90) // true 1h-percentile 41.678318584071 _

metric:histogram(...) | histogram:percentile(90) | window:mean(1h) // 1h-percentile-mean 137.71336734445

4 In

Heinrich Hartmann @heinrichhartman - Jul 5
@jrauser Nice writeup. In practice things look pretty bad, though...

y to John Rauser
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{5} Desireable Properties for Metrics

A statistic S robust if S(A) if a small number of (severe)
outliers induces a small change in S(A).

A statistic S is mergable if S(A U B) can be computed
from S(A) and S(B).
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{5} It looks like you can only have one:

Type Statistic Robust Mergable

Centrality mean X
median

Deviation stddev X
IQR

Distribution Percentiles
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| ) cIRCONUS
QM



{5} APl Monitoring with Histograms
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{5} APl Monitoring with Histograms

Method
1. Divide latency scale into bands

latency

2. Divide the time scale into reporting periods
3.  Count the number of samples in each

latency band x reporting period

Discussion
Summary of full RLC, with reduced precision

Extreme compression compared to logs

time
S
rd

IR
S— e
e

o

Percentiles, averages, medians, etc. can be derived

Aggregation across time and nodes trivial S
sample count

Allows more meaningful metrics
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Histograms as Ultimate Summary Statistic

Histograms are robust.
Histograms are mergable.

Histograms are an univesersal mergable enhancement

(], ™
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{5} Histogram Monitoring in Practice

Histograms can be visualized as heatmaps.

Original Graph
8o

339 I
60 |
. 3

8o

40

20:00 21:00 22:00 23:00 000 1:00 2!00
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] search:metric:histogram("(tag:web-api)”) | histogram:window(10M) [13 - 14) 1449 of 10932 samples - 58% 29%

Aggregate data from all nodes

ST .. across windows of 10min.
serving “web-api
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{5} Histogram Monitoring in Practice

All kinds of metrics can be derived from histograms

Original Graph o
8o 1K
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40
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20:00 21:00 22:00 23!00 0:00 1:00 2:00

metric:histogram(<...>,"web-api") | histogram:window(10M) | histogram:mean() 26.318441885296

metric:histogram(<...>,"web-api”) | histogram:window(10M) | histogram:percentile(50, 90, 99) 15.038461538462, 29.508074534161, 399.6
I metric:histogram(<...>,"web-api”) | histogram:window(10M) | histogram:rate() 218.53333333333

metric:histogram(<...>,"web-api") [46 - 47) 1 of 1270 samples - 95% m 4%
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{6} The search for meaningful metrics
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@HeinrichHartman Qﬁ ) CIRCONUS



{6} Users offended per minute

8o
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~. [LJR @ metric:histogram(<...>,"web-api') %)
B OOr @ 4 2 X v
o

. L[Rl & metriczhistogram(<...>,"web-api") | histogam:count_above(40)
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{6} Total users offended so far

8o gk
///——-'_’_——'_’d_—A——
60 // 3k
7
40 // 2k
20 // 1k
el —— P — P ¥ |
2000 21:00 22:00 23100 Q00 1;00 2100

e R @) metric:histogram(<...>,"web-api") 2 X v

= R @) 40// latency limit @ X v

:Ef L[R] @ metric:histogram(<...>,"web-api") | histogam:count_above(40) // number of users offended per minute Q@ X v

-::: L[R] @ metric:histogram(<...>,"web-api”) | histogam:count_above(40) | integrate() // total # of users offended 2 X v
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Takeaways

Don’t trust line graphs (at least on large scale)
Don’t aggregate percentiles. Aggregate histograms.
Keep your data

- Strive for meaningful metrics
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BACKUP

@HeinrichHartman qh} CIRCONUS



